
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MATHEMATICS OF COMPUTATION
Volume 80, Number 276, October 2011, Pages 2253–2258
S 0025-5718(2011)02385-9
Article electronically published on April 26, 2011

ZERO-SUM FREE SETS WITH SMALL SUM-SET

GAUTAMI BHOWMIK, IMMANUEL HALUPCZOK,
AND JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. Let A be a zero-sum free subset of Zn with |A| = k. We compute

for k ≤ 7 the least possible size of the set of all subset-sums of A.

1. Introduction and results

For an abelian group G and a subset B of G, we define the sum-set of B as
Σ(B) := {

∑
b∈C b | C ⊂ B,C �= ∅} for the set of all subset-sums of B (excluding

the empty subset). We say that B is zero-sum free if 0 /∈ Σ(B). In this note we are
only interested in finite cyclic groups, and we write Zn = Z/nZ for n ≥ 2.

Define fn(k) = min |Σ(B)|, where B runs over all zero-sum free subsets of Zn of
cardinality k, and set f(k) := minn fn(k). If there are no zero-sum free sets of car-
dinality k in Zn, we set fn(k) = ∞. This function arises naturally when considering
the structure of zero-sum free sequences in Zn with not too many repetitions. For
example, Gao and Geroldinger [3] showed that a sequence a1, . . . , am in Zn with
m > δn contains a sub-sequence adding up to 0, provided that no element occurs
in the sequence more than εn times, where ε is a constant depending only on δ, its
precise value being determined by fn.

The following proposition summarises everything which is already known about
f (as far as we know).

Proposition 1.1. (1) If fn(k) < ∞, then fn(k) ≤
(
k+1
2

)
.

(2) We have f(1) = 1, f(2) = 3, and if n ≥ 6, then fn(3) = 5 for n even and
fn(3) = 6 for n odd.

(3) We have f(k) ≥ 2k for k ≥ 4 and f(k) ≥ 1
9k

2 for any k.

(4) If p is prime, then fp(k) ≥ min{
(
k+1
2

)
−δ, p+3

2 }, where δ =

{
0, k ≡ 0 (2),

1, k ≡ 1 (2).

The first statement is obtained by taking B = {1, 2, . . . , k}. Notice that in

particular, if n >
(
k+1
2

)
, then B has no zero-sum subsets and fn(k) ≤

(
k+1
2

)
. The

second statement is straightforward. The third one is due to Eggleton and Erdős
[2] and Olson [5, Theorem 3.2], respectively, and the fourth one is due to Olson [4,
Theorem 2].

In this note we describe the computation of fn(k) for k ≤ 7 and all n. For
k = 7, it took 18 hours of CPU time; the same algorithm solved k = 6 within 2
minutes. Hence, even if we only assume exponential growth of the running time,

Received by the editor June 4, 2009 and, in revised form, October 29, 2009.
2010 Mathematics Subject Classification. Primary 11B75; Secondary 11B50.
The second author was supported by the Fondation sciences mathématiques de Paris.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

2253

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2254 G. BHOWMIK, I. HALUPCZOK, AND J.-C. SCHLAGE-PUCHTA

which appears somewhat optimistic, the case k = 8 would require some serious
improvements of the algorithm.

Our main result is the following

Theorem 1.2. We have f(4) = 8, f(5) = 13, f(6) = 19, and f(7) = 24.

In fact, we computed fn(k) for k ≤ 7 and all n; the results of these computations
are listed in the accompanying table, which should be read as follows:

The last column gives an example of a set B of k elements which has no non-
empty zero-sum subset and which has the number of different subset-sums specified
in the third column. The second column specifies the conditions on n for this
example to work. Some of the examples of B are only specified for some fixed n0;
it is clear how to turn this into an example for any multiple of n0.

Thus one gets the following: if the condition in the second column is satisfied,
then fn(k) has at most the value given in the table. Using a computer, we checked
that there are no other examples making fn(k) smaller.

The boldface values in the third column are the values of f(k).

k cond. on n fn(k) Example

2 n ≥ 4 3 {1, 2} ⊂ Zn

3 n ≥ 6 2|n 5 {1, 1
2n,

1
2n+ 1} ⊂ Zn

n ≥ 7 6 {1, 2, 3} ⊂ Zn

4 9|n 8 {3, 1, 4, 7} ⊂ Z9

n ≥ 10 2|n 9 {1, 2, 1
2n,

1
2n+ 1} ⊂ Zn

n ≥ 12 3|n 9 {1, 1
3n,

1
3n+ 1, 2

3n+ 1} ⊂ Zn

n ≥ 11 10 {1, 2, 3, 4} ⊂ Zn

5 n ≥ 14 2|n 13 {1, 2, 1
2n,

1
2n+ 1, 12n+ 2} ⊂ Zn

15|n 14 {−1, 2, 3, 4, 5} ⊂ Z15

n ≥ 16 15 {1, 2, 3, 4, 5} ⊂ Zn

6 n ≥ 20 2|n 19 {1, 2, 3, 12n,
1
2n+ 1, 12n+ 2} ⊂ Zn

21|n 20 {−1, 2, 3, 4, 5, 6} ⊂ Z21

n ≥ 22 21 {1, 2, 3, 4, 5, 6} ⊂ Zn

7 25|n 24 {5, 10, 1, 6, 11, 16, 21} ⊂ Z25

n ≥ 26 2|n 25 {1, 2, 3, 12n,
1
2n+ 1, 12n+ 2, 1

2n+ 3} ⊂ Zn

27|n 26 {1,−2, 3, 4, 5, 6, 7} ⊂ Z27

n ≥ 30 3|n 27 {1, 2, 1
3n,

1
3n+ 1, 13n+ 2, 2

3n+ 1, 23n+ 2} ⊂ Zn

n ≥ 30 5|n 27 {1, 1
5n,

1
5n+ 1, 2

5n,
2
5n+ 1, 3

5n+ 1, 4
5n+ 1} ⊂ Zn

n ≥ 29 28 {1, 2, 3, 4, 5, 6, 7} ⊂ Zn

It is clear that fn(k) is either ∞ or less than n, so in particular fn(k) = ∞ if
n ≤ f(k). On the other hand, for any n > f(k) the table does give an example
which yields fn(k) < ∞. Thus we get

Corollary 1.3. If k ≤ 7, then fn(k) = ∞ if and only if n ≤ f(k).

When n is prime and large compared to
(
k+1
2

)
, then Proposition 1.1(4) yields the

precise value of fn(k) up to δ. The following corollary of the table suggests that

for n prime, we have fn(k) =
(
k+1
2

)
even when n is not much bigger than

(
k+1
2

)
.

Corollary 1.4. If k ≤ 7 and p is prime, then fp(k) ≥
(
k+1
2

)
.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ZERO-SUM FREE SETS 2255

In fact, our main motivation for carrying out these computations was that we
needed this corollary ([1], Lemma 9) to deduce some general results on zero-sum
free sequences in Zp × Zp and Proposition 1.1(4) was not strong enough to deal
with small primes.

2. Description of the algorithm

We are looking for an algorithm which, for a given k, determines fn(k) for all
n. First we describe how to turn the problem into an algorithmically decidable one
(i.e. how to treat infinitely many values of n simultaneously); then we shall describe
how to reduce the amount of computation so as to solve the problem in real time.

Suppose first that k, �, and n are fixed and that we want to check whether there
exists a zero-sum free set B = {b1, . . . bk} ⊂ Zn consisting of k distinct elements
such that |Σ(B)| = �. Such a set B yields an equivalence relation ∼ on the set of
non-empty subsets of the index set {1, . . . , k}, defined by I ∼ I ′ ⇐⇒

∑
i∈I bi =∑

i∈I′ bi, and this equivalence relation has precisely � equivalence classes. Moreover,
the elements bi ofB form a solution of the system of linear equations and inequalities
E(∼) (in the variables x1, . . . , xk), which we define as follows:

(1) For each i �= j, take the inequality xi �= xj .
(2) For each I ⊂ {1, . . . , k}, I �= ∅, take the inequality

∑
i∈I xi �= 0.

(3) For each pair I, I ′ ⊂ {1, . . . , k}, take
∑

i∈I xi =
∑

i∈I′ xi or
∑

i∈I xi �=∑
i∈I′ xi, depending on whether I ∼ I ′ or not.

On the other hand, any solution in Zn of this system E(∼) defines a set B solving
the original problem.

Note that the coefficients of E(∼) are elements of Z and that E(∼) does not
depend at all on n; thus, to determine fn(k) simultaneously for all n, we can
proceed as follows. Suppose k is given. Iterate through all equivalence relations
∼ (on the set of non-empty subset of {1, . . . , k}) and for each one consider the
corresponding system E(∼). Determine the set of n such that E(∼) has a solution
modulo n. (We still have to describe how to do this.) Then we compute

fn(k) = min{number of equivalence classes of ∼ | E(∼) has a solution modulo n}.

To determine the set of n for which E(∼) has a solution modulo n, the idea is
that every such solution yields a solution of E(∼) in Q/Z by dividing all variables
by n. Thus we first determine all solutions of E(∼) in Q/Z; such a solution then
yields a solution in Zn if and only if multiplying by n removes all denominators.
In other words, we embed the groups Zn in Q/Z and then check which solutions in
Q/Z already lie in Zn.

To solve E(∼) over Q/Z, the algorithm proceeds as follows. First it considers
only the equations. It brings them into upper triangular form by working over Z.
(Thus the original system and the triangular one will have the same set of solutions
in any abelian group.) Then we use the equations to successively determine some
of the variables as linear functions in the other ones; in Q/Z, this works as follows.
Suppose we are using the equation aixi +

∑
j>i ajxj = 0 to determine xi (without

loss of generality ai > 0). In Q/Z, there are ai different solutions to this:

xi =
1

ai

(
−
∑
j>i

ajxj + �i

)
where �i ∈ {0, 1, . . . ai − 1}.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2256 G. BHOWMIK, I. HALUPCZOK, AND J.-C. SCHLAGE-PUCHTA

After treating all variables, for each tuple (�i)i we get a linear expression of each
non-free variable in the free ones. In the remainder of the algorithm, each tuple
(�i)i is treated separately.

Now we symbolically plug these linear expressions into the inequalities L �= R of
E(∼). If one gets identically L = R, then this is not a solution of E(∼) in Q/Z; if on
the other hand one does not get identically L = R for any of the inequalities, then
almost all values in Q/Z for the free variables xi yield a solution of E(∼) in Q/Z,
which means that by multiplying by appropriate n, we find solutions in Zn. The
computer prints all those solutions of E(∼) in Q/Z (the linear expressions of the
non-free variables in the free ones), and we manually check the necessary conditions
on n to make the example work.

Here is an example program output. For k = 5, one solution of a system corre-
sponding to 13 equivalence classes was x1 = 1

2 +x4, x2 = 1
2 +

1
2x4, x3 = 1

2x4, x4 =

x4, x5 = 1
2 . Choosing x4 = 2

n and then multiplying the whole solution by n yields
a solution of the equations in Zn, provided that n is even. (For odd n, we do not
get any solution due to x5 = 1

2 .) To check that the inequalities are satisfied, too,
it suffices to verify that the resulting set B = {x1, . . . , x5} indeed consists of k
different elements and is zero-sum free and that the sum-set Σ(B) has cardinality
13; this is the case when n ≥ 14. Thus we get the line k = 5, n ≥ 14, 2|n in the
table.

The problem is now finite, but the number of systems of equations which we
have to consider is of magnitude the number of equivalence relations on a set of 2k

elements, that is, even for k = 4 we would have to check about 1010 cases. Since
each single case requires a considerable amount of computation, this would already
stretch our resources. We now describe how to make the algorithm faster.

First note that by Proposition 1.1(1), it suffices to consider equivalence relations

with at most �max = k(k+1)
2 − 1 equivalence classes.

Next, we reduce the number of times we have to solve E(∼) over Q/Z: whenever
E(∼) contains an inequality L �= R such that L = R lies in the Z-lattice generated
by the equations in E(∼), then E(∼) is unsolvable in any abelian group, so we
may skip the remainder of the computation in this case. Call the system E(∼) an
almost-example if we do not skip it.

(Note that checking the almost-example condition is not sufficient for proving
that a system of equations and inequalities has solutions modulo some n; for ex-
ample, E = {x1 �= 0, x2 �= 0, x1 �= x2, 2x1 = 2x2 = 0} has no solution modulo any
n, but none of x1 = 0, x2 = 0, x1 = x2 lies in 〈2x1 = 0, 2x2 = 0〉Z.)

It turned out that the number of almost-examples is very small. For example,
for k = 7 and � ≤ 27 there are only 19 of them (up to permutation of the set B), so
there is no need to optimise any part of the algorithm treating the almost-examples.
Moreover, even though the search for almost-examples finds some almost-examples
in several different shapes given by permutations of B, removing duplicates takes
almost no time compared to the main search. Thus in what follows, we only describe
how to optimise the search for almost-examples.

The program starts with a system E consisting only of the inequalities in (1)
and (2). Then it recursively adds equations and inequalities of the form in (3) to
E . (For each pair I, I ′ ⊂ {1, . . . k}, it separately tries the corresponding equation
and the corresponding inequality.) As soon as E gets inconsistent, the program
stops in this branch; by “inconsistent” we mean, as described above, that there

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ZERO-SUM FREE SETS 2257

exists an inequality whose negation lies in the lattice generated by the equations.
If we manage to treat all pairs I, I ′ ⊂ {1, . . . k} without E becoming inconsistent,
then the resulting system corresponds to an equivalence relation ∼ and it is an
almost-example.

The program also stops if it can easily prove that the final equivalence relation
will have more than �max equivalence classes. To this end, it searches for a maximal
anti-clique using a greedy approach. Start with an empty anti-clique A. Iterate
through all subsets I ⊂ {1, . . . , k}. If for all I ′ ∈ A, E is inconsistent with the
equation

∑
i∈I xi =

∑
i∈I′ xi, then add I to A. The cardinality of the set A

obtained in this way is a lower bound for the number of equivalence classes we will
finally get. Whether or not this method yields good bounds depends heavily on the
order in which the subsets I are considered. We will describe the order below.

We can greatly reduce the computation time by exploiting symmetry coming
from permutations of the elements of B. We use the following general method:
we fix, once and for all, a totally ordered set Γ, and for each complete system
E we choose a function vE : {1, . . . , k} → Γ such that vσ(E)(σ(i)) = vE(i) for any
permutation σ ∈ Sk. (Here, σ(E) means that the variables are permuted.) We
may then restrict our search to those E for which vE is (weakly) increasing. During
the computation, the program computes lower and upper bounds for the values
vE(i) (for 1 ≤ i ≤ k) and stops whenever these bounds imply that vE will not be
increasing.

The function vE which we use is

vE(i) = (number of equations in E of the form xi = a+ b,

number of equations in E of the form a = xi + b,

number of equations in E of the form xi + a = b+ c) ∈ N3.

We use the lexicographical order on these tuples, where the first entry is the most
significant one.

It is important to choose a good order in which to try to add equations and
inequalities during the recursion, so that we get contradictions as early as possible.
A good approach is to start with equations between one and two element sums: on
the one hand, such equations imply a lot of other equations. On the other hand, if
only a few such equations exist, then we already get a lot of different sums, which
is helpful to prove that there are two many equivalence classes. Therefore, the
program first treats the equations of the form xi = xi′ + xi′′ , then the equations of
the form xi + xi′ = xi′′ + xi′′′ , and the remaining ones only afterwards. Another
advantage of this order is that we get good bounds early for vE and thus are able
to apply the symmetry conditions.

Now we can explain the order in which the above anti-clique A is built: as we
expect to have a lot of inequalities between one and two element sums, the program
tries these sums first when constructing the anti-clique.

Finally, we mention some of the data structures used to work more efficiently
with E .

• Do not perform any consistency check of E with another equation or in-
equality twice; always store the old results.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2258 G. BHOWMIK, I. HALUPCZOK, AND J.-C. SCHLAGE-PUCHTA

• Keep track of the equivalence relation defined by the equations which we
already added to E . If I and I ′ are equivalent, then concerning the consis-
tency of E we do not need to distinguish between I and I ′, i.e. we are able
to use stored consistency results more often.

Also update the equivalence relation when we accidentally stumble over
an equation which follows from E .

• Each time an equation is added to E , immediately put the system of equa-
tions into upper triangular form; this allows us to check quickly whether
an inequality lies in the Z-lattice generated by the equations.

References

1. G. Bhowmik, I. Halupczok, J.-C. Schlage-Puchta, The structure of maximal zero-sum free
sequences, Acta Arith. 143 (2010), 21–50. MR2640057

2. R. B. Eggleton, P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21 (1972),
111-116. MR0304508 (46:3643)

3. W. Gao, A. Geroldinger, On the structure of zerofree sequences, Combinatorica 18 (1998),
519–527. MR1722257 (2000j:11027)

4. J. E. Olson, An addition theorem modulo p, J. Combinatorial Theory 5 (1968), 45–52.
MR0227129 (37:2714)

5. J. E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975), 147–156. MR0382215
(52:3100)

Université de Lille 1, Laboratoire Paul Painlevé, UMR CNRS 8524, 59655 Villeneuve

d’Ascq Cedex, France

E-mail address: bhowmik@math.univ-lille1.fr

Institut für Mathematische Logik und Grundlagenforschung, Universität Münster,

Einsteinstraße 62, 48149 Münster, Germany

E-mail address: math@karimmi.de

Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany

E-mail address: jcp@math.uni-freiburg.de

http://www.ams.org/mathscinet-getitem?mr=2640057
http://www.ams.org/mathscinet-getitem?mr=0304508
http://www.ams.org/mathscinet-getitem?mr=0304508
http://www.ams.org/mathscinet-getitem?mr=1722257
http://www.ams.org/mathscinet-getitem?mr=1722257
http://www.ams.org/mathscinet-getitem?mr=0227129
http://www.ams.org/mathscinet-getitem?mr=0227129
http://www.ams.org/mathscinet-getitem?mr=0382215
http://www.ams.org/mathscinet-getitem?mr=0382215

	1. Introduction and results
	2. Description of the algorithm
	References

