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Abstract. When counting combinatorial structures, asymptotic questions

are often encoded into the singularity of least absolute value of the correspond-
ing generating function. In this article we describe the rate of convergence of

this singularity, as the structures run over a sequence of sets of trees, which in

the limit exhaust the set of all trees. This question is motivated by applications
in proof theory, more precisely, phase transitions in unprovability results.

1. 1. Introduction and results

Consider an interesting class C of finite rooted trees. A natural question to ask is
how many trees with a given number of nodes are contained in this class. Of course
the answer depends not only on the class C, but also on the question which trees
are to be regarded as equal; for example we can count trees up to isomorphism, up
to cyclic permutation of the daughter trees of each node, or we can completely fix
the ordering of the daughter trees. Further, if we consider r-ary trees we may or
may not allow for empty daughter trees.

In view of these possibilities it appears reasonable to restrict oneself to problems
stemming from real applications. However, it turns out that in many important
cases one can give a nice description of the generating series TC(x) of the number
of trees in C, which can be used to determine the asymptotic behaviour of the num-
ber of trees by complex analytic means. If TC(x) satisfies an algebraic equation,
then the location and the order of the singularity of this equation of least abso-
lute value determines the asymptotic behaviour with great precision. Hence, the
determination of this singularity is one of the first things to do.

In this article we consider the question as to how the singularity behaves as C
varies.

Our first result deals with the number of r-ary trees for varying r. We denote
by the degree of a node the number of daughter nodes, that is, unless the node is
the root, one less than the graph theoretic degree.

Theorem 1.- Let tk(n) be the number of trees with n nodes and degree at most k,
t(n) be the of all trees with n nodes. Put Tk(x) =

∑
n≥1 tk(n)xn, and T (x) =∑

n≥1 t(n)xn. Then Tk has a real branch point of order 2 at ρk, and no other
singularity of absolute value ≤ ρk + δ for some positive constant δ. We have ρ +
e−c1k < ρk < ρ + e−c2k for some constants c1 > c2 > 0, where ρ is the radius of
convergence of T (x).

One can get the values c1 = 2.17, c2 = 0.893 by just keeping track of the
constants in our proof, however, we refrain from giving the details, since doing
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so involves quite some work, no new ideas, and the numerical value of c1, c2 is of
dubious interest.

The interesting part here is the dependence of ρk on k, the other statements are
well known (confer [2], Section IV.7), and are restated here for the convenience of
the reader as well as for the definition of ρk.

Next we fix r, and consider the set of r-ary planar trees, where each node either
has precisely r daughter trees, or is a leaf. Let s(n) be the number of all such
trees of height n, and sh(n) be the number of such trees, such that in each path in
the tree the left-most branch is taken at most h times. In particular, s0(n) is the
number of (r − 1)-ary trees, and s1(2) = r. Then we have the following.

Theorem 2.- Define sh(n) as before, and set Sh(x) =
∑
n≥0 sh(n)xn, and S(x) =∑

n≥0 s(n)xn. Then S and Sh have a real branch point of order 2 at ρ and ρh,
respectively, and no other singularity of absolute value ≤ ρh + δ for some positive
constant δ. Then we have ρh − ρ � h−2.

Here f � g means that f = O(g) and g = O(f); similarly we shall later use
f � g to denote f = O(g). For large h we have the explicit bounds

1

5(C1 + 1)(C2 + 1)h2
< ρh − ρ <

56

C1C2h2

where

C1 =

(
r

r − 1

)r−2(
r

2

)
C2 =

(
r

r − 1

)r
.

Neither the upper nor the lower bound is close to optimal, however, we do not
really care about numerical values.

These questions are motivated by problems in proof theory. Bovykin and Weier-
mann [1] had given analytic statements which are unprovable in Peano arithmetic.
More precisely, they gave a parametric version of Kruskal’s theorem and showed
that as a certain parameter varies there is a sharp phase transition from provable to
unprovable (within the frame work of Peano arithmetic), provided that a weak ver-
sion of Theorem 1 holds true. Weiermann (personal communication) showed that
in the situation of Theorem 1 and 2 we have that ρk → ρ holds true, and noted
that if one had explicit bounds for the speed of this convergence, one could sharpen
these results. In this context Woods [5] showed that the speed of convergence in
Theorem 2 is subexponential, however, his proof was indirect and did not give an
explicit subexponential bound.

Questions concerning the enumeration of certain types of trees arise repeatedly
in the study of phase transitions as introduced by Weiermann [3]. If one works
with proof systems different from PA, the question of enumerating trees is replaced
by the question of determining for a fixed ordinal α the number of ordinals β < α,
which satisfy N(β) ≤ n, where N is a suitable complexity measure, e.g. the length
of the Cantor normal form of β. In general the generating series of these counting
functions do not satisfy any reasonable functional equation, which makes the related

problems much harder. However, the case α = ωω
...ω

was successfully treated by
Weiermann [4].

One advantage of reducing problems to the enumeration of trees is that this
area of analytic combinatorics is well developed. The specific question on the
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convergence speed of the singularities ρh might look artificial to a combinatorist,
still we can use the machinery described in [2], in particular chapter II and VI.

2. 2. Proof of Theorem 1

It is well known that the series T (x) is the unique solution of the functional
equation

T (x) = x exp

∑
ν≥1

T (xν)

ν


satisfying T (0) = 0 and T ′(0) = 1. Our first result shows that Tk can be de-
fined as a solution of an approximation of this equation. Define the polynomial

Pk(X1, . . . , Xk) as follows. Expand exp
(∑

ν≥1
Xν
ν

)
into a power series in the in-

finitely many variables X1, . . ., and let Pk be the part consisting only of monomials
Xa1

1 . . . Xam
m satisfying

∑
jaj ≤ k. The following is essentially [2, Prop. I.6], note

that while in the statement of that proposition only the existence of some polyno-
mial is shown, the precise form is contained in the proof.

Lemma 2.1.- The function Tk is the unique solution of the functional equation
Tk(x) = xPk(Tk(x), Tk(x2), . . . , Tk(xk)).

Lemma 2.2.- The least positive singularity of Tk is given by the system of equations

Tk(ρk) = ρkPk
(
Tk(ρk), . . . , Tk(ρkk)

)
1 = ρk

∂

∂x1
Pk
(
Tk(ρk), . . . , Tk(ρkk)

)
.

Proof.- This follows from the implicit function theorem, see [2, Chapter VII.4].
QED

Since Pk(x1, . . . , xk) consists of the monomials of weight ≤ k in exp(
∑
i
xi
i ),

and the partial derivative of exp(x1 + f(x2, . . . , xk)) with respect to x1 is again
exp(x1 + f(x2, . . . , xk)), we see that

∂

∂x1
Pk(x1, . . . , xk) = Pk−1(x1, . . . , xk).

Hence, we obtain that

Tk(ρk) = 1 + ρk

(
Pk
(
Tk(ρk), . . . , Tk(ρkk)

)
− Pk−1

(
Tk(ρk), . . . , Tk(ρkk)

)
. (1)

We first prove the upper bound. We set Qk = Pk − Pk−1. We have ρk ≤ ρ2 =
0.4202, ρ = 0.338 (Confer [2, p. 455]), in particular, ρ`k < ρ hold true for all
k, ` ≥ 2. Clearly, all coefficients in the Taylor series of Tk are at most as large as
the corresponding coefficient of T , hence, for x ∈ [0, ρk] we have

Tk(x) ≤ 1 + ρkQk
(
Tk(x), T (ρ22) . . . , T (ρk2)

)
≤ 1 + ρk exp

(
Tk(x) +

∞∑
i=2

T (ρi2)

i

)
− ρkPk−1

(
Tk(x), T (ρ22) . . . , T (ρk2)

)
.
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We claim that for k sufficiently large this implies Tk(x) ≤ 2 for all x ≤ ρk. Assume
to the contrary that the equation Tk(x) = 2 has a solution x0 ≤ ρk. Then we have

2 ≤ 1 + ρk exp
(

2 +

∞∑
i=2

T (ρi2)

i

)
− ρkPk−1

(
2, T (ρ22) . . . , T (ρk2)

)
,

on the other hand we have

lim
k→∞

Pk−1
(
x1, . . . , xk−1

)
= exp

( ∞∑
i=1

xi
i

)
for all non-negative sequences (xi) for which the series on the right hand side
converges, hence, for k sufficiently large we have∣∣∣∣∣exp

(
2 +

∞∑
i=2

T (ρi2)

i

)
− Pk−1

(
2, T (ρ22) . . . , T (ρk2)

)∣∣∣∣∣ < 1,

and we obtain 2 < 1 + ρk, contradicting the fact that ρk ≤ ρ2 = 0.4202. Hence, for
k sufficiently large we have Tk(ρk) ≤ 2.

Let a1, . . . , ak be non-negative integers satisfying a1 + 2a2 + . . . ,+kak = k. The
coefficient of xa11 · · ·x

ak
k in Qk is

1(∑k
i=1 ai

)
!

( ∑k
i=1 ai

a1, . . . , ak

) k∏
i=1

1

iai
=

1∏k
i=1 ai!i

ai
.

Since the coefficients of T are non-negative, we have T (ρ`) < ρ`−2T (ρ2) for all
ρ ≥ 2, since on the other hand T (ρ2) > ρ2, we obtain T (ρ`) ≤ T (ρ2)`/2 for all
` ≥ 2. The contribution of the monomial corresponding to the tuple (a1, . . . , ak) is
therefore

2a1

a1!

k∏
i=2

T (ρ2)
iai
2

ai!iai
≤ 2a1T (ρ2)

k−a1
2

a1!
= T (ρ2)k/2

2a1T (ρ2)
−a1
2

a1!
� T (ρ2)

k
2 .

Monomials in Qk correspond to partitions of k, hence, the number of such mono-

mials is < ec
√
k, and we obtain that

Qk(Tk(ρk), T (ρ2), . . . , T (ρk))� e−ck

for some positive c, that is, Tk(ρk) = 1+O(e−ck). From Lemma 2.2 we now deduce

ρ−1k =
(
1 +O(e−ck)

)
Pk(Tk(ρk), . . . , Tk(ρkk)). (2)

The polynomial Pk consists of a subset of the series exp(
∑ xi

i ), hence, in the domain

x1 ≤ 2, x` ≤ cT (ρ2)`/2 the partial derivative of P with respect to any of the xi is
bounded independent of k. Hence,

Pk(Tk(ρk), . . . , Tk(ρkk))−Pk(1, T (ρ2k), . . . , T (ρkk))� |1−Tk(ρk)|+
∞∑
i=2

|T (ρik)−Tk(ρik)|

The series T and Tk coincide in the first k coefficients, hence, for real positive x
the difference |T (x) − Tk(x)| can be bounded by the difference of T (x) and the
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partial sum consisting of the terms of degree ≤ k. Hence, |T (x)− Tk(x)| � (x/ρ)k

uniformly for x ≤ ρ, and we obtain

Pk(Tk(ρk), . . . , Tk(ρkk))− Pk(1, T (ρ2k), . . . , T (ρkk))

� e−ck +

∞∑
i=2

(ρik
ρ

)k
= e−ck +

ρ2kk
ρk
· 1

1− ρk
� e−ck +

(
ρ2k
ρ

)k
≤ e−ck +

(
ρ22
ρ

)k
� e−ck,

since
ρ22
ρ = 0.5225 . . . < 1. Note that in order to get the last bound we might have

to decrease the value of c. Since ρk is bounded against 0 and ∞, we can plug this
estimate into (2) to obtain

ρ−1k =
(
1 +O(e−ck)

)
Pk(1, T (ρ2k), . . . , T (ρkk)).

Since ρk ≥ ρ, replacing ρk by ρ decreases the right-hand side, and we obtain

ρ−1k ≥
(
1 +O(e−ck)

)
Pk(1, T (ρ2), . . . , T (ρk)).

On the other hand we have

ρ−1 = lim
k→∞

Pk(1, T (ρ2), . . . , T (ρk)).

Define σk as
σ−1k = Pk(1, T (ρ2), . . . , T (ρk)).

Then σ−1k − σ
−1
k−1 = Qk(1, T (ρ2), . . . , T (ρk))� e−ck, hence,

|σk − ρ| = |σk − lim
`→∞

σ`| �
∑
`≥k

e−c` � e−ck,

that is, ρ−1k ≥
(
1 +O(e−ck)

)
ρ−1, and we obtain ρk ≤ ρ+O(e−ck). By choosing c2

somewhat smaller than c the upper bound follows.
For the lower bound note that (1) implies Tk(ρk) > 1. On the other hand there

exists a tree with k + 2 vertices which is counted by T , but not by Tk. Hence,
T (x) ≥ Tk(x) + xk+2 holds true for all x ∈ [0, ρ], in particular Tk(ρ) ≤ 1 − ρk+2.
This implies ρk 6= ρ. Differentiating the functional equation yields for x ∈ [0, ρk)

T ′k(x) = Pk(Tk(x), . . . , Tk(xk))

+x

k∑
j=1

jxj−1T ′k(xj)
( ∂

∂xj
Pk

)
(Tk(x), . . . , Tk(xk))

=
Tk(x)

x
+ xPk−1(Tk(x), . . . , Tk(xk−1))

+x

k∑
j=2

jxj−1T ′k(xj)
( ∂

∂xj
Pk

)
(Tk(x), . . . , Tk(xk))

≤ Tk(x)

2
+ xTk + kT ′(ρ2)

k∑
j=2

( ∂

∂xj
Pk

)
(Tk(x), . . . , Tk(xk)).

Since Pk is a polynomial of weight k, differentiating Pk(x1, . . . , xk) with respect to
xi increases the value by k

xi
at most, and we obtain( ∂

∂xj
Pk

)
(Tk(x), . . . , Tk(xk)) ≤ k

Tk(xj)
Pk((Tk(x), . . . , Tk(xk))
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≤ jTk(x)

xj+1
≤ 2k

xk+1
,

and therefore
T ′k(x)�k

3

xk+1 . Since T (ρk)− T (ρ) > ρk+2, we deduce

ρk − ρ�
ρk+2ρk+1

k

k3
� e−ck,

and the claimed lower bound follows as well.

3. 3. Proof of Theorem 2

We begin by recalling some properties of Sh.
Proposition 3.-

(1) We have S0(z) = 1, Sh+1(z) = 1 + zSh(z)Sh+1(z)r−1;
(2) For h ≥ 2 we have Sh(ρh) = r−1

r−2 ;

(3) We have S(ρ) = r
r−1 ;

(4) We have ρ = (r−1)r−1

rr .
Proof.- The recursive relation follows from the definition of the h-th family. The
second and third claim follows by singularity analysis from this. The last statement
was proven by Weiermann. Note that here the determination of the value of ρ is
difficult; once the value of ρ is known, it can be verified by a tedious yet trivial
calculation. QED

For a real number x ∈ [0, ρm] we put δm = r
r−1 − Sm(x). We will study the

sequence (δm) for fixed x slightly larger than ρ.
Lemma 3.1.- For every ε > 0 there exists an m0 and a δ > 0, such that Sm0

(x) ∈
[ r
r−1 − ε,

r
r−1 ] for all x ∈ [ρ, ρ+ δ].

Proof.- We have Sm(ρ)→ S(ρ) = r
r−1 , hence we can choose m0 such that Sm0(ρ) ≥

r
r−1 − ε. Since Sm0 is a power series with non-negative coefficients, it is non-

decreasing, and we obtain Sm0(x) ≥ r
r−1 − ε for all x ∈ [ρ, ρm]. On the other

hand there exist trees which are counted by S, and not by Sm0 , hence Sm0(ρ) <
S(ρ), and since both Sm0

and S are continuous, this inequality holds true in some
neighbourhood of ρ. Hence if δ is sufficiently small, then Sm0

(x) < r
r−1 for x < ρ+δ.

QED
Lemma 3.2.-If x ∈ [ρ, ρm+1] and δm > er(x− ρ), then

δm+1 = δm − C1δ
2
m − C2(x− ρ) +O(δ3m + δm(x− ρ))

with

C1 =

(
r

r − 1

)r−2((
r

2

))
, C2 =

(
r

r − 1

)r
.

Proof.- Inserting the definition of δm into the recurrence relation for Tm we obtain

r

r − 1
− δm+1 = 1 + ρ

(
r

r − 1
− δm

)(
r

r − 1
− δm+1

)r−1
+(x− ρ)

(
r

r − 1
− δm

)(
r

r − 1
− δm+1

)r−1
We claim that given δm ∈ [e(x− ρ), 1] this equation has a unique solution δm+1 ∈
[0, δm]. View the difference of the right and the left hand side as a function of δm+1.
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If we insert δm+1 = 0, we get

r

r − 1
− 1− ρ

(
r

r − 1
− δm

)(
r

r − 1

)r−1
− (x− ρ)

(
r

r − 1
− δm

)(
r

r − 1

)r−1
>
δm
r
− (x− ρ)

(
r

r − 1
− δm

)(
r

r − 1

)r−1
≥ δm

r
− ec

h2
≥ 0,

while for δm+1 = δm we have

r

r − 1
− δm − 1− ρ

(
r

r − 1
− δm

)r
− (x− ρ)

(
r

r − 1
− δm

)r
<

r

r − 1
− 1− ρ

(
r

r − 1

)r
︸ ︷︷ ︸

=0

−δm − (x− ρ)

(
r

r − 1
− δm

)r
< 0.

The derivative of this function with respect to δm+1 is

− 1 + (r − 1)ρ

(
r

r − 1
− δm

)(
r

r − 1
− δm+1

)r−2
+ (r − 1)(x− ρ)

(
r

r − 1
− δm

)(
r

r − 1
− δm+1

)r−2
< −1 + (r − 1)ρ

(
r

r − 1

)r−1
+ e(r − 1)(x− ρ)

= −1

r
+ e(r − 1)(x− ρ) < 0,

and we conclude that δm+1 ∈ [0, δm] is uniquely determined by (3).
Inserting the value for ρ into (3), expanding the second term on the right, and

bounding the last term on the right rather crudely, we obtain

δm+1 = δm −
(

r

r − 1

)r−2((
r − 1

2

))
δ2m+1 −

(
r

r − 1

)r−2
(r − 1)δm+1δm

−(x− ρ)

(
r

r − 1

)r
+O(δ3m + δm(x− ρ)),

which leads to
δm+1 ≥ δm − C1δ

2
m − C2(x− ρ),

provided that δm ∈ [er(x − ρ), ε], where ε > 0 is a constant depending only on r.
In particular δm − δm+1 = O(δ2m + (x − ρ)), hence for δm ∈ [er(x − ρ), ε] we can
replace δm+1 on the right by δm without increasing the error term, and our claim
follows.

If δm > ε, the stated error term does not tend to 0 as m → ∞, that is, we can
replace the error term by O(1), and the statement follows from the trivial bounds
δm ≤ 1

r−1 , δm+1 > − 1
r−2 . QED

We now obtain the lower bound for ρh. In fact, we show that if we fix x = ρ+ c
h2

with c sufficiently small, then δh > 0, that is, Sh(t) < r
r−1 for t < x, and therefore

x < ρh. Choose ε > 0 in such a way that the constant implied by the error term in
Lemma 3.2 is < ε−1. Then we obtain for δm ∈ [ ech2 , ε] the recursive bound

δm+1 > δm − (C1 + 1)δ2m −
c(C2 + 1)

h2
.
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Choose m0 in such a way that δm0 < min(ε, 1
2(C1+1) ), which is possible in view of

Lemma 3.1. Put m1 = dδ−1m0
e. We now prove by induction that

δm ≥
1

2(C1 + 1)(m−m0 + 1)
− cm(C2 + 1)

h2
.

For m = m0 this inequality is obviously true. If we assume that it holds for m,
then

δm+1 >
1

2(C1 + 1)(m−m0 + 1)
− 1

4(C1 + 1)(m−m0 + 1)2
− c(m+ 1)(C2 + 1)

h2

since the right hand side is increasing as a function of δm on [0, 1
2(C1+1) ]. Our claim

now follows from the relation

1

x
− 1

2x2
≥ 1

x
− 1

x(x+ 1)
=

1

x+ 1

valid for all x > 1. We conclude

δh >
1

2(C1 + 1)(h−m0 + 1)
− c(C2 + 1)

h
>

1

4(C1 + 1)h
>
erc

h2
,

provided that h is sufficiently large and c < 1
5(C1+1)(C2+1) . Hence we obtain ρh >

ρ+ 1
5(C1+1)(C2+2)h2 .

For the upper bound we show that if c is a sufficiently large constant, then for
xh = ρ+ c

h2 the sequence δm becomes large and negative quite fast, contradicting

the bound δh ≥ − 1
r−2 . Assume that xh < ρh. Then Tm+1(xh) is given the unique

solution of the recursive relation within [1,∞), that is, we can use (3) without
worrying about the existence of a solution. In particular (4) holds true for all δm
with m ≤ h, since the restriction δm > e(x−ρ) was only used to prove the existence
of the solution of the recursion.

First note that the same computation used for the proof of the lower bound gives
δm < 2

C1(m−m0+m1)
, provided that m is sufficiently large. Put m2 = dh/3e. Then

for h sufficiently large we conclude δm2
< 7

C1h
. Next we use (4) in the weaker form

δm+1 < δm − (C2 − 1)(x− ρ),

which is valid for |δm| < ε. Put m3 = d2h/3e. Then

δm3
< δm2

− hC2

4
(x− ρ),

hence, if x− ρ > 56
C1C2h2 , then δm3

< − 7
C1h

.

If we expand the right hand side of (3) using the binomial theorem, and assume
that δm is negative, then all terms are positive. Hence deleting terms of total
degree ≥ 3 in δm and δm+1 gives a value for δm+1 which is too large, that is, for
δm negative the error term in (4) is negative. Moreover, δm+1 < δm, and we obtain
the inequality

δm+1 < δm − C1δ
2
m − C2(x− ρ) < δm − C1δ

2
m

valid for all m such that δm < 0 and m < h and all x with ρ < x < ρh. We
now define mi starting with i = 4 by mi = mi−1 + d1/(C1δmi−1

)e, this sequence is
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defined as long as the sequence δm is defined, that is, for all i such that mi ≤ h.
Let imax be the largest index for which this sequence is defined. Then

δmi+1
< δmi − (mi+1 −mi)C1δ

2
mi ≤ δmi −

C1δ
2
mi

C1δmi
= 2δmi .

Since δh > r
r−1 −

r−1
r−2 = 1

(r−1)(r−2) < 1, we obtain 7·2imax

C1h
< 1, and therefore

imax ≤ log h. On the other hand we have

mimax
≤ m3 +

imax−1∑
i=1

1

C1δmi
+ 1 ≤ 2h

3
+

2

C1δm3

+ imax ≤
20h

21
+ imax.

For h sufficiently large this implies imax ≥ h
22 , and the two bounds for imax contra-

dict each other for h sufficiently large. Hence we obtain that the two assumptions
x < ρh and x−ρ > 56

C1C2h2 contradict each other, and we conclude ρh ≤ ρ+ 56
C1C2h2

for h sufficiently large. Hence our theorem follows.

4. 4. Conclusion and outlook

We have considered a filtrations T1 ⊂ T2 ⊂ . . . of the set of trees. We determined
the speed of convergence of the dominating singularity of the generating functions
of these subsets to the dominating singularity for the set of all trees, and similarly
for a certain set of planar trees. In the first case the speed of convergence was
exponential, while in the second it was only quadratic. An intuitive explanation
for this phenomenon is that in the first case we have that Ti(ρi) → T (ρ), while
in the second we have Si(ρi) = r−1

r−2 , which is bounded away from S(ρ) = r
r−1 .

However, we are not yet able to formulate and prove a strict statement underlying
this intuition.

The research in this article is motivated by its application in the theory of logical
phase transitions, in fact, an unpublished version of Theorem 1 has already been
applied by Bovykin and Weiermann[1].

This leads to further research in two quite different directions. The first is
motivated by the analytic behaviour of the generating functions. Suppose F is
a function in two variables, analytic in a neighbourhood of the origin. Assume
there exists a unique sequence of functions (fi) satisfying f0 = 1, F (fi+1, fi) =
0. Under what conditions on F does there exist a unique function f satisfying
F (f, f) = 0, and how does the sequence (fi) approximate f? Similarly if Fi is a
series of functions in one variable, approximating a function F in a suitable way, are
there reasonable conditions such that the solutions fi of the functional equations
Fi(fi) = 0 approximate the solution f of F (f) = 0?

The second direction of research is motivated by the proof theoretic applica-
tions. If one wants to generalize the phase transitions obtained in [1] to other
systems of arithmetic, one has to solve counting problems involving ordinal num-
bers below a certain ordinal and with bounded complexity. This line of research
appears to be more demanding then the first, as in general we cannot expect that
the counting functions are described by simple functional equations. Therefore the
well-developed machinery of analytic combinatorics cannot be applied anymore.
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