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Chapter 1

Topology

1.1 (Set–Theoretic) Topology in General

This part follows [2], [3], [4] and [6].

1.1.1 What is Topology All About ?

Consider some sets X and Y , and they could be Ω ⊂ R3, or L2(Ω), or C∞0 (Ω). We wish to understand

• what are continuous maps from X to Y ,

• what are open, closed, compact subsets of X,

and the list of questions does not stop here. We would like to define these concepts without measuring
distances in X or Y (because there is no metric in C∞0 (Ω) that describes what we want from that
space). Recall that in Rn all these properties can be defined by means of norms, but in topological spaces
this is no longer possible. Instead, neighbourhoods and open sets will become the key concepts from
which everything else will be defined. One price we have to pay is that we should no longer work with
converging sequences because they are not the most relevant idea. As an example: we will see that every
continuous map from a topological space X to a topological space Y will map every converging sequence
to a converging sequence (and the limit is mapped to the limit), but the converse does not hold. This
differs from the metric situation. On the other hand, we will learn that we can achieve a lot without ever
using converging sequences.

One more remark is in order. When we speak about some space, we mean a set with a certain structure.
Examples are

linear spaces (aka vector spaces): these are sets with a linear structure that comes from the two
vector space operations (vector plus vector gives vector; number times vector gives vector),

metric spaces: these are sets with some metric (maybe a certain metric space is also a linear space,
maybe it is not)

normed spaces: these are linear spaces that have a norm structure on top, and both structures are
compatible. Each normed space can be interpreted as a metric space (the converse is wrong).

topological spaces: these are sets with some topological structure (maybe a certain topological space
is also a linear space, maybe it is not). Each metric space can be interpreted as a topological space
(the converse is wrong).

topological vector spaces: these are vector spaces which also have a topological structure on top, and
both structures are compatible.
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1.1.2 Basic Concepts: Neighbourhoods Bases and Open Sets

Definition 1.1 (Neighbourhood basis). Let X be a non-empty set. We assume that to each a ∈ X,
there belongs some subset B(a) of the power set P(X) with the following properties:

∀a ∈ X : B(a) 6= ∅; and ∀B ∈ B(a) : a ∈ B (B1)

∀a ∈ X : ∀B1, B2 ∈ B(a) : ∃B3 ∈ B(a) : B3 ⊂ B1 ∩B2 (B2)

∀a ∈ X : ∀B ∈ B(a) : ∀b ∈ B : ∃C ∈ B(b) : b ∈ C ⊂ B (B3)

Each such B ∈ B(a) is called basic neighbourhood of a.

Example 1.2. Take X = Rn, equipped with the usual Euclidean norm |x| = (x21 + . . .+ x2n)1/2, and then
put B(a) = {Uε(a) : 0 < ε < 1}, with Uε(a) = {x ∈ Rn : |x− a| < ε} being the usual open balls of radius ε
centred at a ∈ Rn. Visualise yourself what (B1), (B2), (B3) mean in this example.

Definition 1.3 (Open sets, Topology, Topological space). We assume the situation of the previous
definition. A set Ω ⊂ X is called open set provided that

∀a ∈ Ω: ∃B ∈ B(a) : a ∈ B ⊂ Ω.

A set τ ⊂ P(X) is called topology of X if it comprises all the open sets in X. Then (X, τ) is called
topological space.

Lemma 1.4. Every basic neighbourhood B ∈ ∪x∈XB(x) in a topological space (X, τ) is an open set.

Proof. Let B ∈ B(x) for some x ∈ X. Take any b ∈ B. Due to (B3), some C ∈ B(b) exists with
b ∈ C ⊂ B. This means that B is open.

Proposition 1.5 (Properties of open sets). Let (X, τ) be some topological space. Then we have:

∅ and X are open sets (O1)

If Ω1 and Ω2 are open sets, then also Ω1 ∩ Ω2 (O2)

If Ωi are open sets, with i from some non-empty index set I, then also
⋃
i∈I

Ωi (O3)

Proof. The principle ex falso quodlibet implies ∅ ∈ τ , and X ∈ τ is obvious as well, which gives (O1). Let
Ω1 and Ω2 be open, and a ∈ Ω1 ∩ Ω2. Since Ωj are open, there are Bj ∈ B(a) with a ∈ Bj ⊂ Ωj , for
j = 1, 2. Owing to (B2), there is some B3 ∈ B(a) with a ∈ B3 ⊂ B1 ∩ B2 ⊂ Ω1 ∩ Ω2, and therefore also
Ω1 ∩ Ω2 is open. And to show (O3), let us be given open sets Ωi for i from some (possibly uncountable)
index set I. Assume a ∈ ∪i∈IΩi. Then a ∈ Ωi0 for some i0 ∈ I, and Ωi0 is open, hence some B ∈ B(a)
exists with a ∈ B ⊂ Ωi0 ⊂ ∪i∈IΩi, proving (O3).

Definition 1.6 (Neighbourhoods and Neighbourhood filters). Let (X, τ) be a topological space.
We say that some set U ⊂ X is a neighbourhood of a ∈ X if some B ∈ B(a) exists with a ∈ B ⊂ U . All
the neighbourhoods U of a ∈ X form the neighbourhood filter N(a):

N(a) := {U ⊂ X : U is a neighbourhood of a} .

Contrary to the expectation, a neighbourhood need not be open.

Remark 1.7. In other books the following approach can be found: τ ⊂ P(X) is called a topology on X if
its elements Ω satisfy (O1), (O2), and (O3), and those Ω are then called opens sets in X. Subsequently,
U ⊂ X will be called a neighbourhood of a ∈ X if some open Ω exists with a ∈ Ω ⊂ U . Then the basic
neighbourhoods of a point are defined as the open neighbourhoods of that point. Then one has to prove
that these basic neighbourhoods satisfy (B1), (B2), (B3). However, both approaches are equivalent and
will lead to the same theory and same results. We have chosen the approach here with the hope that we
will arrive faster at the applications.

Definition 1.8 (Interior of a set). Let A be a set in a topological space (X, τ). We say that a point
a ∈ A is an interior point of A (also called inner point) if some basic neighbourhood B ∈ B(a) exists with
a ∈ B ⊂ A. All interior points of A form the interior of A,

interior(A) := {a ∈ A : a is inner point of A} .
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Proposition 1.9. For every set A in a topological space, interior(A) is an open set.

Proof. Pick a ∈ interior(A). Definition 1.8 says that then some B ∈ B(a) exists with a ∈ B ⊂ A. From
(B3) we learn that to each b ∈ B, there is some C ∈ B(b) with b ∈ C ⊂ B ⊂ A. This means that each
b ∈ B is an interior point of A, hence B ⊂ interior(A).

Expressed differently: for each a ∈ interior(A), there is some B ∈ B(a) with a ∈ B ⊂ interior(A). That
is the definition of interior(A) being open.

Remark 1.10. We mention without proof: interior(A) is the union of all open subsets of A.

1.1.3 Examples of Neighbourhood Bases and Topological Spaces

The Banach space Rn: consider the vector space Rn with open sets in the usual sense, and pick a ∈ Rn.
Then we define a neighbourhood base

B(a) =
{
{x ∈ Rn : |x− a| < ε} : 0 < ε < 1

}
.

Any metric space: Let (X, d) be a metric space (not necessarily complete), and put (for each a ∈ X)

B(a) =

{{
x ∈ X : d(a, x) <

1

2k

}
: k ∈ N

}
.

By Definition 1.3, this choice of B completely determines a topology τ in X. We call it the metric
topology. This is the standard method of interpreting a metric space as a topological space.

The extended real line: Put R := R ∪ {+∞,−∞} and define neighbourhood bases as follows:

B(a) :=
{

(a− ε, a+ ε) : 0 < ε < 1
}
, a ∈ R,

B(+∞) :=
{

(k,∞) ∪ {+∞} : k ∈ N
}
,

B(−∞) :=
{

(−∞,−k) ∪ {−∞} : k ∈ N
}
.

The extended natural numbers: Put N := N0 ∪ {+∞} and define neighbourhood bases like this:

B(a) :=
{
{a}
}
, a ∈ N0,

B(+∞) :=
{
{n ∈ N : n ≥ k} ∪ {+∞} : k ∈ N

}
.

The vector space of all sequences in R: Consider the vector space

X =
{

(x1, x2, x3, . . . ) : xj ∈ R ∀j
}

and define a metric

dX(x, y) :=

∞∑
k=1

1

2k
|xk − yk|

1 + |xk − yk|
, ∀x, y ∈ X.

[As an exercise: prove the triangle inequality for this dX !] Then (X, dX) becomes a metric space
which we can topologise in the usual way.

The vector space of all sequences in a normed space: Choose some normed space Z with norm
z 7→ ‖z‖Z . Then define X as the vector space of all sequences in Z,

X :=
{

(x1, x2, x3, . . . ) : xj ∈ Z ∀j
}

and define a metric

dX(x, y) :=

∞∑
k=1

1

2k
‖xk − yk‖Z

1 + ‖xk − yk‖Z
, ∀x, y ∈ X. (1.1)
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The space C(R) of continuous functions on R: observe that f 7→ supt∈R |f(t)| is not a norm on
X := C(R) since f = exp belongs to X but the mentioned supremum is infinite. On the other hand,
we can define a metric on C(R) as

d(f, g) =

∞∑
k=1

1

2k

‖f − g‖L∞(−k,k)

1 + ‖f − g‖L∞(−k,k)
. (1.2)

The discrete topology: let X be any non-empty set and define a topology as τ = P(X), called the
discrete topology.

The null topology: let X be any non-empty set and define a topology as τ = {∅, X}, called the null
topology, also called the chaotic topology.

This is a good moment to present a method of comparing topologies.

Definition 1.11 (Finer topologies and coarser topologies). Let X be a non-empty set with two
topologies τ1 and τ2. If τ1 ⊂ τ2 (which means that every τ1–open set is also τ2–open), then we say that

• τ2 is finer than τ1,

• τ1 is coarser than τ2.

We also say that τ2 is stronger than τ1, and τ1 is weaker than τ2.

In particular, the discrete topology is the finest topology of all topologies, and the null topology is the
coarsest topology of all topologies. They have a feature—we know that these topologies always exist; like
the tax office.

Lemma 1.12 (Hausdorff criterion1). Let τ1 and τ2 be topologies on X. Then are equivalent:

• τ2 is finer than τ1

• ∀a ∈ X : ∀B1 ∈ B1(a) : ∃B2 ∈ B2(a) : B2 ⊂ B1.

1.1.4 Closed Sets

Definition 1.13 (Closed set). Let (X, τ) be a topological space. A set A ⊂ X is called closed set if its
complement X \A is an open subset of X.

Proposition 1.14 (Properties of closed sets). Let (X, τ) be some topological space. Then we have:

∅ and X are closed sets (C1)

If C1 and C2 are closed sets, then also C1 ∪ C2 (C2)

If Ci are closed sets, with i from some index set I, then also
⋂
i∈I

Ci (C3)

Proof. Nice exercise. Using (O1), (O2), (O3) is recommended here.

Example 1.15. Let X = R3 and τ = P(X). Then every subset of R3 is open and closed at the same
time. We admit that this topology is a weirdo.

Remark 1.16. One could also have chosen (C1), (C2), (C3) as the foundation of defining a topology
instead of (B1), (B2), (B3), leading to the same results in the end.

Definition 1.17 (Cluster point of a set, Closure of a set). Let A be a set in a topological space
(X, τ). We say that a point a ∈ X is a cluster point of A if each basic neighbourhood B ∈ B(a) contains
some a′ ∈ A with a′ 6= a. All cluster points of A form the cluster point set of A,

c.p.(A) := {a ∈ X : a is cluster point of A} .

We define the closure of A as

A := A ∪ c.p.(A).
1Felix Hausdorff, 1868–1942
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Proposition 1.18. For every set A in a topological space, A is a closed set.

Proof. We will show that X \A is an open set. Pick some

a0 ∈ X \A = (X \A) ∩ (X \ c.p.(A)).

Then a0 6∈ A and a0 6∈ c.p.(A).

Now some basic neighbourhood B1 ∈ B(a0) exists with B1 ⊂ (X\A), because: otherwise every B1 ∈ B(a0)
would contain some element of A (which differs from a0 due to a0 6∈ A), hence a0 would be a cluster point
of A.

And also some basic neighbourhood B2 ∈ B(a0) exists with B2 ⊂ (X \ c.p.(A)), because: otherwise every
B2 ∈ B(a0) would contain some b2 ∈ c.p.(A), and then (B3) gives us some C2 ∈ B(b2) with b2 ∈ C2 ⊂ B2.
Now b2 being a cluster point of A means that there is some b′2 ∈ C2 ∩ A with b′2 6= b2. And also b′2 6= a0
because a0 6∈ A. Hence we had shown that for each B2 ∈ B(a0) some b′2 ∈ B2 ∩ A exists with b′2 6= a0,
hence a0 would be a cluster point of A, contrary to the choice of a0.

Now we apply (B2) and find some B3 ∈ B(a0) with

a0 ∈ B3 ⊂ B1 ∩B2 ⊂ (X \A) ∩ (X \ c.p.(A)) = X \A,

and this is the definition of X \A being open.

Proposition 1.19. A set A in a topological space is closed if and only if c.p.(A) ⊂ A.

Proof. Assume c.p.(A) ⊂ A. Then A = A, and A is always closed, hence A is closed.

Now let A be a closed set. Then X \A is open. Choose any b ∈ X \A. Then there is some neighbourhood
B ∈ B(b) with b ∈ B ⊂ X \ A, in particular B ∩ A = ∅. Hence b can not be a cluster point of A, and
therefore each cluster point of A is contained in A.

Remark 1.20. We mention without proof: A is the intersection of all closed sets that contain A.

We come to an application that goes back to Euclid.

Theorem 1.21. The set of prime numbers is infinite.

Proof. We introduce a topology on Z by defining a neighbourhood base B(a) for every a ∈ Z:

B(a) := {Na,b : b ∈ N+} , Na,b := {x = a+ nb : n ∈ Z} .

Then a ∈ Na,b for every a ∈ Z and every b ∈ N+, hence (B1) holds. And given Na,b ∈ B(a), Na,c ∈ B(a),
we quickly check Na,bc ⊂ Na,b ∩ Na,c, which yields (B2). To check (B3), we take a ∈ Z and some
Na,c ∈ B(a) with arbitrary c ∈ N+. Then we take an arbitrary b ∈ Na,c, hence b = a + n0c for some
n0 ∈ Z. We need to construct C ∈ B(b) with C ⊂ Na,c. We can write C = Nb,d with some d ∈ N+ and
then have to make sure that Nb,d ⊂ Na,c which means b+ nd ∈ Na,c for every n ∈ Z. Just take d = c.

Having defined this collection of neighbourhood bases B(a), we then build open sets as in Definition 1.3,
and it follows that every open set is either empty or it contains an infinite number of elements. Moreover,
each Na,b is an open set. But it is also a closed set, because it is the complement of an open set:

Na,b = Z \
b−1⋃
i=1

Na+i,b.

Now every integer different from ±1 has at least one prime divisor (call it p), and then this integer belongs
to N0,p. It follows that

Z \ {−1,+1} =
⋃

p prime

N0,p. (1.3)

Assume that there are only finitely many primes. Then the right-hand side of (1.3) is closed (as a union
of finitely many closed sets), and then {−1,+1} must be open (as the complement of a closed set).
Contradiction.
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1.1.5 Induced Topologies

Definition 1.22 (Induced topology, Relative topology). Consider some topological space (X, τ) and
some non-empty subset X0 of X. To each a0 ∈ X0, we define a collection B0(a0) of basic neighbourhoods
on X0 by

B0(a0) :=
{
X0 ∩B : B ∈ B(a0)

}
,

and then we construct—from all the neighbourhood bases B0(a0) as a0 runs through X0—a topology τ0 of
X0. This topology is called the induced topology on X0, also called the relative topology on X0 or the
trace topology on X0.

Obviously, it needs to be shown that the collections B0 as constructed above actually satisfy (B1), (B2),
(B3). This is a nice exercise.

We say that a set Ω0 is open in X0 if it is contained in X0 and open in the induced topology τ0. For
instance, take X = R and equip it with the metric topology. Put X0 = [0, 1], equipped with the relative
topology. Then (0.7, 1] is open in X0, but not open in X.

1.1.6 Converging Sequences, and the Hausdorff Property

Definition 1.23 (Converging sequence). Let (X, τ) be a topological space. We say that a sequence
(x1, x2, x3, . . . ) ⊂ X converges to x∗ ∈ X (and write this as limn→∞ xn = x∗) if

∀B ∈ B(x∗) : ∃N0 ∈ N : ∀n ≥ N0 : xn ∈ B.

Example 1.24. Take some set X and equip it with the null topology. Then every sequence in X converges
simultaneously to each element of X.

This is not what one usually wants, and the obstacle is that we do not have enough neighbourhoods.

Definition 1.25 (Hausdorff property). Let (X, τ) be a topological space. We say that τ has the
Hausdorff property and call (X, τ) a Hausdorff space if the following holds:

∀x1, x2 ∈ X : if x1 6= x2 then ∃B1 ∈ B(x1), ∃B2 ∈ B(x2) : B1 ∩B2 = ∅.

Example 1.26. The only topology that turns N into a Hausdorff space is the discrete topology.

Lemma 1.27. Every metric topology has the Hausdorff property.

Lemma 1.28. In every Hausdorff space, every set {p} that contains only one point is a closed set.

We discuss some examples of converging sequences.

• Take the vector space X of sequences that take values in a normed space Z, and equip it with the
topology that comes from the metric (1.1). Then a sequence of elements of X converges (topologi-
cally) if and only if it converges component-wise.

• Take the vector space C(R) of continuous functions on R, equipped with the topology that comes
from the metric (1.2). Then this convergence is equivalent to the uniform convergence on every
compact sub-interval of R.

Definition 1.29 (Dense subset). Let (X, τ) be a topological space, and R ⊂ S ⊂ X. Then we say that
R is dense in S if

∀s ∈ S : ∀B ∈ B(s) : ∃r ∈ R ∩B.

An equivalent statement is: R ⊃ S.

Warning 1.30. We have to be careful with sequences. All the following statements are wrong, even in
Hausdorff spaces:
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• The subset A of B is dense in B if and only if, for each b ∈ B, a sequence in A can be found that
converges to b.

• A point a ∈ X is a cluster point of A if and only if a sequence in A can be found that converges to
a.

• A map between two topological spaces is continuous (to be defined in the next section) if and only if
it is sequentially continuous (defined below).

• A set A is compact (defined by means of covers by open sets in the usual way) if and only if it is
sequentially compact (every sequence contains a subsequence that has a limit in A).

The obstacle is always that there need not be a countable neighbourhood base. On the other hand, those
statements are correct in metric spaces.

The general strategy is to define all relevant concepts using neighbourhoods alone, and to stop thinking
in terms of converging sequences.

1.1.7 Continuous Maps

We recall some rules for any map f : X → Y between two sets X and Y . Here I 6= ∅ is any index set:

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai), ∀Ai ⊂ X,

f(A1 ∩A2) ⊂ f(A1) ∩ f(A2), ∀A1, A2 ⊂ X,
f(A1 \A2) ⊃ f(A1) \ f(A2), ∀A1, A2 ⊂ X,

and equality in the last two lines (for all Ai ⊂ X) will hold only if and only if f is injective.

Additionally, if A ⊂ X, then

A ⊂ f−1(f(A)),

with equality (for all A) if and only if f is injective. Similarly, for all B ⊂ Y ,

f(f−1(B)) ⊂ B,

with equality (for all B) if and only if f is surjective.

The good news is that f−1 alone behaves perfectly:

f−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1(Bi), ∀Bi ⊂ Y,

f−1

(⋂
i∈I

Bi

)
=
⋂
i∈I

f−1(Bi), ∀Bi ⊂ Y,

f−1(B1 \B2) = f−1(B1) \ f−1(B2), ∀B1, B2 ⊂ Y.

Definition 1.31 (Continuous maps). Let (X, τ) and (Y, σ) be topological spaces. A map f : X → Y is
called continuous at x∗ ∈ X if

∀V ∈ B(f(x∗)) : ∃U ∈ B(x∗) : f(U) ⊂ V.

We say that this f is continuous if it is continuous at every x∗ ∈ X.

Lemma 1.32. For a map f : X → Y with X and Y as above, the following statements are equivalent:

• f is continuous,

• for every open set Ω ⊂ Y , its pre-image f−1(Ω) is open in X,

• for every closed set B ⊂ Y , its pre-image f−1(B) is closed in X.
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From the penultimate • we quickly deduce that the composition g ◦ f of two continuous maps g and f is
again continuous.

For sake of completeness, we clarify what is meant by sequential continuity at x∗: for every sequence
(x1, x2, . . . ) ⊂ X that converges to x∗, the sequence (f(x1), f(x2), . . . ) ⊂ Y converges to f(x∗).

Lemma 1.33 (Continuity implies sequential continuity). Let the map f : X → Y between the
topological spaces (X, τ) and (Y, σ) be continuous. Then it is sequentially continuous.

Proof. Pick x∗ ∈ X and some sequence (x1, x2, . . . ) ⊂ X that converges to x∗. We need to show that
limk→∞ f(xk) = f(x∗). To this end, we pick some basic neighbourhood V of f(x∗). Owing to the
continuity of f , there is some basic neighbourhood U of x∗ with f(U) ⊂ V . And by Definition 1.23, we
find some N0 ∈ N with xn ∈ U for all n ≥ N0. But then f(xn) ⊂ V for such n.

Lemma 1.34. Let (X, τ) be a topological space, and f : X → C be continuous, where we have endowed C
with the usual metric topology. Then ker f = {x ∈ X : f(x) = 0} is a closed subset of X.

1.1.8 How to Construct Topologies

Proposition 1.35 (Intersection of topologies). Let us be given a non-empty set X and a non-empty
index set I. If τi with i ∈ I are topologies on X, then so is

τ∗ :=
⋂
i∈I

τi.

Of all topologies which are coarser than every τi, τ∗ is the finest.

Sketch of proof. Verify (O1), (O2), (O3).

Remark 1.36. • The intersection τ∗ need not be Hausdorff even if each τi is Hausdorff because the
intersection might consist of ∅ and X only.

• Each identity map

idX : (X, τ∗)→ (X, τi), x 7→ x

is continuous.

• Recall the definition of the infimum of some set A ⊂ R: of all lower bounds of A, you take the
largest. The intersection of topologies is defined similarly.

• A neighbourhood base of a ∈ X in τ∗ is given by all B with a ∈ B ⊂ X which are τi–open for each
i ∈ I.

Proposition 1.37 (Topology generated by a subset). Let us be given a non-empty set X. If U ⊂
P(X) is some non-empty set, then

τ(U) :=
⋂{

σ : U ⊂ σ, σ is topology on X
}

(1.4)

(which means the intersection of all topologies σ that contain U) is a topology on X, and it is the coarsest
topology that contains U. A neighbourhood base for a ∈ X then is given by all finite intersections of
elements of the set (of sub-sets of X)

{X} ∪ {U ∈ U : a ∈ U}. (1.5)

Proof. The discrete topology participates in the intersection in (1.4), hence the index set is non-empty.
Now apply Proposition 1.35.

For a ∈ X, define B(a) as the set of all finite intersections of elements of the set (1.5). Next we verify
(B1), (B2), (B3). Then X ∈ B(a), hence B(a) 6= ∅, then (B1) quickly follows. To show (B2), it suffices to
choose B3 = B1 ∩B2. And (B3) is verified as follows. Consider any B ⊂ B(a). If B = X then the claim
is obvious. If B 6= X then B = ∩nj=1Uj for some Uj ∈ U with a ∈ Uj for all j. For every b ∈ B, choose
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C = B. Hence (B3) holds. This shows that all the B(a) (as a runs through X) are a neighbourhood base
for some topology % on X.

Next we show that % = τ(U). Each U ∈ U is contained in all topologies σ that participate in the
intersection of (1.4), consequently B(a) ⊂ τ(U) for all a ∈ X, hence % ⊂ τ(U), which means % is coarser
than τ(U). But % contains U, and therefore % ⊃ τ(U).

Proposition 1.38 (“Union” of topologies). For some non-empty index set I, let us be given topologies
τi (with i ∈ I) on X. Define

τ∗ :=
⋂
{σ : τi ⊂ σ (∀i), σ is topology on X} .

Then τ∗ is again a topology on X, and

• of all topologies which are finer than every τi, it is the coarsest;

• each identity map

idX : (X, τi)→ (X, τ∗), x 7→ x

is continuous.

• A neighbourhood base for a ∈ X is given by all finite intersections of elements of

{X} ∪

{
U ∈

⋃
i∈I

τi : a ∈ U

}
.

Proof. Nice exercise.

Remark 1.39. • The topology τ∗ is not the set–theoretical union of the sets τi (similarly to the direct
sum of sub-vector spaces, which is not equal to the union set of these sub-vector spaces either).

• But τ∗ = τ(
⋃
i∈I τi) in the sense of Proposition 1.37.

Next we show how topologies can be defined using maps between sets of which some are already topological
spaces. Suppose you have sets X and Y , with Y already being equipped with a topology. And you consider
maps from X to Y . The goal is to construct a topology on X. If you provide too few open sets on X,
then almost none map from X to Y will be continuous, which is a situation without sense. On the other
hand, if X has too many open sets, then almost every map from X to Y will be continuous, and again the
concept “continuity” becomes meaningless. It seems advisable to endow X with “just the right amount
of open sets” as a topology. We call it the initial topology.

Proposition 1.40 (Initial topology). Let us be given a non-empty set X. Assume that (Yi, σi) with
i ∈ I are topological spaces, and we have maps fi : X → Yi for each i. Then⋂{

τ ⊂ P(X) : τ is topology on X and all fi : (X, τ)→ (Yi, σi) are continuous (i ∈ I)
}

is a topology on X, and it is the coarsest topology on X for which all fi become continuous. We call it
the initial topology on X generated by the maps fi : X → Yi. A neighbourhood base of a ∈ X is given by
the finite intersections of elements of

{X} ∪
{
U ⊂ X : ∃i ∈ I, ∃V ∈ Bi(fi(a)) : U = f−1i (V )

}
(1.6)

with Bi(fi(a)) as a neighbourhood base consisting of (σi–)open neighbourhoods of fi(a) ∈ Yi in σi.

Proof. Observe that τ = P(X) participates in the intersection, hence the index set is non-empty. Now
apply Proposition 1.35. A neighbourhood base for the topology of the point fi(a) is given by all open
sets V ⊂ Yi that contain fi(a). Then f−1i (V ) contains a ∈ X and is required to be open in τ , and
therefore τ ⊂ P(X) must contain all the elements of the set (1.6), as a runs through X. Now τ is (by its
construction) the coarsest topology that contains (for all a ∈ X) the set (1.6) as a subset. It suffices to
apply Proposition 1.38.
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Example 1.41. Take Y = [−1, 1] with the metric topology, X = R and f : X → Y with y = sin(x).
Determine the initial topology on X. Explain why it does not have the Hausdorff property.

Example 1.42 (The induced topology, reloaded). Consider some topological space (X, τ) and choose
some non-empty subset X0 ⊂ X. Then we have the inclusion map f : X0 → X that sends every x ∈ X0

to itself. The initial topology on X0 generated by the map f is exactly the induced topology on X0.

Here comes one more example of the initial topology.

Definition 1.43 (Product space topology). Let (Xi, τi) be topological spaces, with i = 1, . . . , n. Put
X := X1 × . . .×Xn, and define the projections

πi : X → Xi, πi(x) := xi,

where i = 1, . . . , n and x = (x1, . . . , xn). Then the product space topology on X is defined as the initial
topology on X generated by the maps πi.

Lemma 1.44. In the situation of Definition 1.43, a neighbourhood base of a = (a1, . . . , an) ∈ X is

B(a) =

n∏
i=1

Bi(ai) := B1(a1)× . . .×Bn(an),

where Bi(ai) denotes a neighbourhood base of ai in the topological space (Xi, τi).

Proof. Let B2 ∈ B2(π2(a)) be a basic neighbourhood of π2(a) = a2 ∈ X2. By Proposition 1.40, the
pre-image π−12 (B2) = X1 × B2 × X3 × . . . × Xn is a member of the neighbourhood base of a ∈ X, and
then

⋂n
i=1 π

−1
i (Bi) also is a basic neighbourhood of a ∈ X. But

⋂n
i=1 π

−1
i (Bi) = B1 × B2 × . . . × Bn ∈∏n

i=1 Bi(ai).

Having understood how to transfer a topology from Y to X, we now consider the opposite direction.

Proposition 1.45 (Final topology). For i ∈ I 6= ∅, let us be given topological spaces (Xi, τi), and
additionally some set Y . Consider maps fi : Xi → Y for all i ∈ I. Then the following holds:

• there is some topology σ on Y , given by

σ =
{

Ω ⊂ Y : f−1i (Ω) is open subset of Xi, ∀i ∈ I
}
,

called the final topology on Y generated by {fi : i ∈ I},

• this topology on Y is the finest topology on Y that makes all the maps fi : Xi → Y continuous,

• we have the intersection

σ =
⋂
{σi ⊂ P(Y ) : σi is final topology generated by fi alone} .

Describing a neighbourhood base for the final topology is not easy, see [2, 0.2.16] for some ideas.

Example 1.46. Take X = R with the metric topology τ|·|, Y = R and f : X → Y with y = sin(x).
Determine the final topology on Y .

Example 1.47 (Quotient topology). Let (X, τ) be a topological space with some equivalence relation
∼. Define X/ ∼ as the set of equivalence classes generated by the relation ∼. Then the map

π : X → X/ ∼, x 7→ [x]

that maps x to its equivalence class [x] is called canonical surjection of X onto X/ ∼. The quotient
topology on X/ ∼ is defined as the final topology on X/ ∼ generated by π.
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1.2 Topological Vector Spaces

1.2.1 Definition and Immediate Consequences

Definition 1.48 (Topological vector space). A vector space X over K ∈ {C,R} is called topological
vector space (tvs) if X is equipped with a topology τ , and the usual vector space operations

+: X ×X → X,

· : K×X → X

are continuous, where X ×X and K×X have the product topologies, and K has the norm topology.

Lemma 1.49. Let (X,K, τ) be a tvs. Then the vector space operations are separately continuous, which
means: for each x0 ∈ X and each λ0 ∈ K, the maps

f : X → X, x 7→ x+ x0,

g : X → X, x 7→ λ0x

are continuous.

Proof. Nice exercise. Using Lemma 1.44 is recommended.

Corollary 1.50. Let (X,K, τ) be a tvs, and choose some a ∈ X. Then a neighbourhood base B(a) is
given by a+ B(0) (which means by translating a neighbourhood base of the origin by the vector a).

In particular: the topology on a tvs is uniquely determined after a neighbourhood base of the origin has
been specified.

Proposition 1.51. Let X and Y be tvs over K.

• A linear map from X to Y is continuous if and only if it is continuous at the origin.

• Sums, scalar multiples and compositions of linear maps are again linear maps. In particular, L(X,Y )
is a vector space, and L(X,X) is an algebra.

• For every A ∈ L(X,Y ), ker(A) is closed if and only if Y is a Hausdorff space.

Lemma 1.52. Let (X,K, τ) be a tvs, and U be a basic neighbourhood of 0. Then the following holds:

• There is some U ′ ∈ B(0) with U ′ + U ′ ⊂ U .

• There is some U ′ ∈ B(0) with αU ′ ⊂ U for all α with |α| ≤ 1.

• For each x0 ∈ X, there is some positive δ such that x0 ∈ λU for all λ ∈ K with |λ| ≥ 1
δ .

Proof. We make repeated use of Definition 1.31 and Lemma 1.44, without mentioning it. The first claim
is shown like this: Addition is continuous at (0, 0) ∈ X ×X, hence, for all U ⊂ B(0), there are U1 ∈ B(0)
and U2 ∈ B(0) with U1 + U2 ⊂ U . Now choose U ′ = U1 ∩ U2.

We come to the penultimate claim. The multiplication by scalars is continuous at (0, 0) ∈ K×X. Hence
there is some W ∈ B(0) and some ε > 0 such that αx ⊂ U for all α ∈ K with |α| < ε and all x ∈W . Now
choose U ′ = ε

2W .

Concerning the last claim: the multiplication by scalars is continuous at (0, x0) ∈ K × X. As a special
case, for each U ∈ B(0) some positive δ exists such that for all α ∈ K with |α| < δ, we have αx0 ∈ U . It
suffices to substitute λ = 1

α .

We say that all U ∈ B(0) are absorbent sets, by which we mean that if you blow up U sufficiently (multiply
it by growing λ) then you eventually arrive at any x0 ∈ X and afterwards never lose it when λ keeps
growing.

Definition 1.53 (Bounded subset of a tvs). A subset A of a tvs X is called bounded if for each
neighbourhood U of the origin, there is a positive λ0 with A ⊂ λU for each λ ≥ λ0.

Intuitively, this means that the set A will be swallowed by each neighbourhood of the origin if you pump
up the neighbourhood big enough.
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1.2.2 Seminorms

Sometimes we prefer to work with seminorms on a tvs instead of neighbourhoods of the origin because
seminorms allow for easier calculations.

Definition 1.54 (Minkowski–functional). Let (X,K, τ) be a tvs and U ∈ B(0) be a basic neighbourhood
of the origin. Define a function pU : X → R≥0 by

pU (x) := inf {λ ≥ 0: x ∈ λU} ,

called Minkowski–functional of U .

Definition 1.55. A set M in a vector space (X,K) is called absolutely convex if

x, y ∈M, |α|+ |β| ≤ 1 imply αx+ βy ∈M.

Proposition 1.56. If U ∈ B(0) is an absolutely convex basic neighbourhood of the origin, then pU is a
seminorm on X, which means

pU (x) ≥ 0 ∀x ∈ X,
pU (λx) = |λ|pU (x), ∀x ∈ X, ∀λ ∈ K,

pU (x+ y) ≤ pU (x) + pU (y), ∀x, y ∈ X.

Proof. Nice exercise.

Remark 1.57. Now we have a method of constructing a collection of seminorms from a base of convex
neighbourhoods of the origin:

• Let Bc(0) be a neighbourhood base of the origin, consisting of absorbent convex sets.

• Then (by Lemma 1.52) there is also a neighbourhood base Bac(0) consisting of absolutely convex
absorbent neighbourhoods of the origin (and Bac(0) generates the same topology as Bc(0)).

• Each U ∈ Bac(0) gives rise to a seminorm pU on X. This seminorm pU is the Minkowski functional
associated to U .

• The topology of X has the Hausdorff property if (for each 0 6= x ∈ X) some pU (with U depending
on x) exists with pU (x) 6= 0.

This procedure can be reversed:

Proposition 1.58 (Building a TVS from a Seminorm Family). Let X be a vector space over K,
and let {pi : i ∈ I} be a family of seminorms on X. To each i ∈ I and each ε > 0, we define

Ui,ε := {x ∈ X : pi(x) < ε} ,

and then we put, for every finite subset J of I,

UJ,ε :=
⋂
j∈J

Uj,ε.

• Then

B(0) := {UJ,ε : ε > 0, J finite subset of I} , B(a) := B(0) + a

form a neighbourhood base of a topology on X.

• If X had already a topology before, and the seminorms pi have been constructed by the procedure
in Remark 1.57, then the topology constructed from these seminorms is equivalent to the original
topology.

• The topology has the Hausdorff property if for each x ∈ X some i ∈ I exists with pi(x) > 0.
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• A set A ⊂ X is bounded if and only if

∀i ∈ I : ∃Ci > 0: ∀x ∈ A : pi(x) < Ci.

• A sequence (x1, x2, . . . ) ⊂ X converges to a limit x∗ ∈ X if and only if

∀i ∈ I : lim
m→∞

pi(xm − x∗) = 0.

Such a vector space X, equipped with this topology, is called locally convex (topological vector) space.

Proposition 1.59. Let X and Y be locally convex topological vector spaces, with {pi : i ∈ I} being the
collection of seminorms on X. A linear map f of X into Y is continuous if for each seminorm q on Y ,
there is a finite set I ′ ⊂ I and a constant Cq such that

∀x ∈ X : q(f(x)) ≤ Cq
∑
i∈I′

pi(x).

The situation becomes nicer if the index set I is countable (WLOG I = N+), in which case we can define
a function d : X ×X → R like this:

d(x1, x2) =

∞∑
j=1

2−j
pj(x1 − x2)

1 + pj(x1 − x2)
, x1, x2 ∈ X.

We quickly show that d has all the properties of a metric. We say that the tvs X is metrisable.

If we now suppose additionally that X is a complete space (which means that each metric Cauchy sequence
has a limit in X), then X is called a Fréchet 2 space.3 The advantage is now that continuity is again
equivalent to sequential continuity, density equivalent to sequential density, compactness (defined by
coverings using open sets) equivalent to sequential compactness.

Lemma 1.60. Let X be a Fréchet space, and let Y be any locally convex tvs. Then a linear map f : X → Y is continuous
if and only if it is sequentially continuous.

Proof. We need to show that f is continuous at the origin (see Proposition 1.51). Suppose that f were not continuous at
the origin. Then there is a neighbourhood V of 0 ∈ Y with f−1(V ) not containing any neighbourhood of 0 ∈ X. But
the topology of X can also be generated by a metric d, hence for every ε > 0, the ε-ball {x ∈ X : d(0, x) < ε} is not fully
contained in f−1(V ). This means that for any ε > 0, there is some xε ∈ X with d(0, xε) < ε but f(xε) 6∈ V . This contradicts
the sequential continuity of f .

We need to work with quotient spaces, too:

Definition 1.61 (Topology of a quotient space of a TVS). Let X be a tvs and Y ⊂ X be a sub-vector space. On
X, we define an equivalence relation ∼ as x1 ∼ x2 if and only if x1 − x2 ∈ Y . The quotient space X/Y comprises all the
equivalence classes, and the canonical projection π : X → X/Y maps each element x to its equivalence class [x] =: πx.

We say that a set A ⊂ X/Y is open if π−1(A) is open in X.

Then X/Y actually is again a tvs.

Lemma 1.62. Let X be a tvs, and Y be a sub-vector space of X.

• The quotient space X/Y is a Hausdorff space if and only if Y is a closed subspace of X.

• Let X be a normed space and Y is a closed sub-vector space of X. Then X/Y is actually a normed space with norm

‖πx‖X/Y := inf
y∈Y
‖x− y‖X .

Proof.

• The quotient space X/Y is a Hausdorff space

⇐⇒ if and only if the set {[0]} that contains only the zero vector [0] of X/Y is a closed subset of X/Y ,

⇐⇒ if and only if the complement C := (X/Y ) \ {[0]} is an open subset of X/Y ,

⇐⇒ if and only if the pre-image π−1(C) is an open subset of X.

Now it suffices to recognise that π−1(C) is the complement of Y in X.

2Maurice René Fréchet, 1878–1973
3The actual definition of Fréchet spaces includes the invariance: d(x1 + y, x2 + y) = d(x1, x2), which obviously holds.
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• By direct calculation, one checks that ‖(πx1) + (πx2)‖X/Y ≤ ‖πx1‖X/Y + ‖πx2‖X/Y and ‖λ · (πx)‖X/Y =

|λ| ‖πx‖X/Y , and also ‖πx‖X/Y = 0 if and only if x ∈ Y . Therefore, the expression πx 7→ ‖πx‖X/Y actually is

a norm. It remains to have a look at Example 1.47 to verify that this quotient norm actually generates the correct
topology.

Example 1.63. Let X = KM (for some M ∈ N) be a vector space of column vectors, equipped with the
natural norm topology. Then the vector space of linear maps from X into K is isomorphic to the vector
space of row vectors with M entries, and these maps (from X to K) are automatically continuous. We
write X ′ for the set of linear and continuous maps from KM into K. Its elements are written as x′, rows
with M entries. A dash (′) on a vector informs us that it is a row.

Next consider Y = KN for some N ∈ N. Then every linear and continuous map A : X → Y is being
generated by a matrix A ∈ KN×M , in the sense of y = Ax = A · x as a product of matrix times column
vector. We are being pedantic on purpose and insist on distinguishing Ax (which is the map A applied to
the vector x) from A ·x (which is the matrix-times-vector product of A and x). Applying y′ ∈ Y ′ to y ∈ Y
gives a number y′ · y ∈ K.

Moreover, the transposed matrix A> then maps from Y to X, in the sense of x = A> · y. If you transpose
this equation, you get x> = (A> · y)> = y> ·A. Now we can write (with x′ ∈ X ′ defined as x′ := y′ ·A)

y′︸︷︷︸
∈Y ′

· y︸︷︷︸
∈Y

= y′ · (A · x) = (y′ ·A) · x = x′︸︷︷︸
∈X′
· x︸︷︷︸
∈X

,

and this could be abbreviated as

y′ · (Ax) = (Aty′) · x.

We may say that A> belongs to a map At : Y ′ → X ′.

We lift the ideas from this example to a more abstract level.

Definition 1.64 (Topological dual space). Let X be a locally convex tvs over the field K. The set
of all linear and continuous maps from X into K is denoted by X ′, and it is called the topological dual
space4.

Each x ∈ X generates a seminorm px on X ′ via

T 7→ px(T ) :=
∣∣〈T | x〉X′×X ∣∣ , T ∈ X ′.

The topology of X ′, generated by these seminorms, is called the weak–∗–topology.

We make no attempt at describing a neighbourhood base for the weak–∗–topology, because seminorms
are so much nicer.

Definition 1.65 (Transposed operator). Let X and Y be locally convex spaces, and let A : X → Y be
linear and continuous. Then A generates a linear operator At : Y ′ → X ′ via〈

Aty′ | x
〉
X′×X := 〈y′ | Ax〉Y ′×Y , y′ ∈ Y ′, x ∈ X,

which we call transposed operator.

Proposition 1.66. With the above notations, At is continuous.

Proof. We start from Proposition 1.59. For each seminorm p of X ′, we need a finite collection of seminorms
q1, . . . , qk of Y ′ and a constant C, such that

∀y′ ∈ Y ′ : p(Aty′) ≤ C
k∑
j=1

qj(y
′).

Only those p are interesting that are generated by an x ∈ X via

p(x′) =
∣∣〈x′ | x〉X′×X ∣∣ , ∀x′ ∈ X ′,

4We quickly check that X′ is an algebraic vector space over the field K
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hence we have

p(Aty′) =
∣∣∣〈Aty′ | x〉

X′×X

∣∣∣ =
∣∣〈y′ | Ax〉Y ′×Y ∣∣ =: q(y′),

where q is a seminorm on Y ′ that is being generated by Ax ∈ Y .

You may ask “what are these transposed operators good for”, and a part of the answer can be given when
we look at matrices A ∈ KN×M that map from KM into KN . It is easy to check that ker(A) ⊥ img(A>)
and also ker(A>) ⊥ img(A). If you utilise the dimension formula for sub-vector spaces and the rank–nullity
theorem5, then you can show that

KM = ker(A)⊕ img(A>), KN = ker(A>)⊕ img(A),

as orthogonal direct sum of sub-vector spaces. A conclusion then is: A generates a surjective map if and
only if A> generates an injective map. We think that this is a nice result.

The next proposition is an attempt at generalising this principle.

Proposition 1.67. Let X and Y be locally convex topological vector spaces with the Hausdorff property.
If the operator A : X → Y is continuous and has dense range, then At is injective.

Conversely: if A : X → Y is continuous and At is injective, then A has dense range.

Proof. Suppose that img(A) is a dense subset of Y , which means img(A) = Y . We wish to show that Aty′ = 0 implies
y′ = 0. Let Aty′ = 0 ∈ X′, which means

∀x ∈ X :
〈
Aty′ | x

〉
X′×X

= 0, hence
〈
y′ | Ax

〉
Y ′×Y

= 0.

Hence img(A) is contained in the pre-image (y′)−1({0}). But the one-member set {0} is a closed subset of K, and y′

is continuous, and therefore (y′)−1({0}) is a closed subset of Y . Finally we observe

Y ⊃ (y′)−1({0}) ⊃ img(A) = Y,

with the implication (y′)−1({0}) = Y , or y′ = 0 ∈ Y ′. For the second ⊃, we have used that the closure img(A) is the
intersection of all closed sets that contain img(A), and (y′)−1({0}) is one of them.

Conversely, let At be injective, and suppose img(A) to not be dense in Y . We will now construct some non-zero y′ ∈ Y ′
with Aty′ = 0, which will contradict the injectivity of At. There is some y0 ∈ Y with y0 6∈ img(A).

We build the quotient space Z = Y/img(A), and we let π : Y → Z be its canonical projection. Define z0 := πy0. Then

z0 6= 0 because y0 6∈ img(A). By Lemma 1.62, Z is a Hausdorff space (in particular a normed space, and ‖z0‖Z 6= 0).

5Dimensionsformel für lineare Abbildungen
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Now we apply the Hahn–Banach theorem6 with Z0 = span(z0), p(z) :=
‖z‖Z
‖z0‖Z

, and λ : Z0 → K is given by λ(tz0) = t

for t ∈ K. Then the Hahn–Banach theorem gives us some linear map Λ: Z → K with Λ(tz0) = t for all t ∈ C and
|Λ(z)| ≤ p(z) on Z. In particular, Λ is continuous as a map from Z to K, hence Λ is an element of Z′. Put z′ := Λ.

Then this z′ ∈ Z′ enjoys 〈z′ | z0〉Z′×Z 6= 0. We define the desired y′ as y′ := z′ ◦ π, and we observe〈
y′ | y0

〉
Y ′×Y

=
〈
z′ ◦ π | y0

〉
Y ′×Y

=
〈
z′ | πy0

〉
Z′×Z

6= 0.

This proves y′ 6= 0 ∈ Y ′. On the other hand, for all x ∈ X we have〈
Aty′ | x

〉
X′×X

=
〈
y′ | Ax

〉
Y ′×Y

=
〈
z′ ◦ π | Ax

〉
Y ′×Y

=
〈
z′ | πAx

〉
Z′×Z

=
〈
z′ | 0

〉
Z′×Z

= 0 = 〈0 | x〉X′×X ,

and therefore Aty′ = 0 as identity in X′, contradicting the injectivity of At.

Proposition 1.68. We keep the assumptions of the previous proposition. If A : X → Y is a topological
isomorphism (which means that A : X → Y is bijective, and A, A−1 are both continuous), then also At is
a topological isomorphism, and we have (At)−1 = (A−1)t.

Proof. The proof is split into several steps.

(A−1)t exists and is continuous: Since A−1 is continuous, there is a continuous transposed operator
(A−1)t : X ′ → Y ′ defined by〈

(A−1)tx′ | y
〉
Y ′×Y :=

〈
x′ | A−1y

〉
X′×X .

At is injective: this holds since A is surjective, hence its range is dense in Y , and then Proposition 1.67
yields the injectivity of At.

At is surjective: to show this, let us be given x′ ∈ X ′, and we wish to find y′ ∈ Y ′ with Aty′ = x′. We
claim that y′ := (A−1)tx′ does the trick: For all x ∈ X we then have〈

Aty′ | x
〉
X′×X = 〈y′ | Ax〉Y ′×Y =

〈
(A−1)tx′ | Ax

〉
Y ′×Y =

〈
x′ | A−1Ax

〉
X′×X

= 〈x′ | x〉X′×X ,

and this means Aty′ = x′.

(At)−1 = (A−1)t: we need to check that (A−1)tAt = idY ′ and At(A−1)t = idX′ . To this end, we calculate

〈y′ | y〉Y ′×Y =
〈
y′ | AA−1y

〉
Y ′×Y =

〈
Aty′ | A−1y

〉
X′×X =

〈
(A−1)tAty′ | y

〉
Y ′×Y ,

〈x′ | x〉X′×X =
〈
x′ | A−1Ax

〉
X′×X =

〈
(A−1)tx′ | Ax

〉
Y ′×Y =

〈
At(A−1)tx′ | x

〉
X′×X ,

from which both identities follow.

The identity (At)−1 = (A−1)t can be visualised as a commutative diagram, which tells us that it does not
matter which path you take from the top-left corner to the bottom-right corner:

A
transposition−−−−−−−−→ At

(·)−1

y (·)−1

y
A−1

transposition−−−−−−−−→ (At)−1

= (A−1)t

6 The Hahn–Banach theorem is one of the holiest theorems of Functional Analysis, compare 36.1 in [3]. Its statement
is this: Let Z be a vector space over K, p be a seminorm on Z, and Z0 be a sub-vector space of Z. Suppose a linear map
λ : Z0 → K satisfies |λ(z)| ≤ p(z) for all z ∈ Z0. Then there is some linear map Λ: Z → K which coincides with λ on Z0,
and |Λ(z)| ≤ p(z) for all z ∈ Z.



Chapter 2

The Fourier Transform

This chapter is following [5]. Another nice presentation can be found in [10], and a further approach
(which is quite nice from the functional analytic aspect) is in [7]. Compare also [8] and [9].

2.1 The Fourier Transform Applied to Functions

2.1.1 The Schwartz Function Space S(Rn)

Definition 2.1 (Schwartz function space S(Rn)). The Schwartz1 space S(Rn) consists of all those
functions f ∈ C∞(Rn) with

pk(f) :=
∑

|α|+|β|≤k

sup
x∈Rn

∣∣xβ∂αx f(x)
∣∣ <∞, ∀k ∈ N0. (2.1)

Here we have set, for α, β ∈ Nn0 ,

xβ := xβ1

1 · x
β2

2 · . . . · xαnn , ∂αx :=
∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαnn
.

We equip the vector space S(Rn) with the locally convex topology that comes from this countable collection
of seminorms pk, and then S(Rn) turns into a Fréchet space.

These Schwartz functions are infinitely smooth, they decay at infinity faster than all powers of |x|−1, and
all their derivatives decay at infinity faster than all powers of |x|−1, too.

Lemma 2.2 (Convergence in S(Rn)). A sequence (ϕ1, ϕ2, . . . ) ⊂ S(Rn) converges to ϕ ∈ S in the
topology of S(Rn) if limj→∞ pk(ϕj − ϕ) = 0 for all k. We write this convergence as

ϕj
S−−−→

j→∞
ϕ.

This means (at least) that the sequence (ϕ1, ϕ2, . . . ) converges to ϕ uniformly, and all the sequences of
derivatives enjoy uniform convergence, too. The convergence in the topology of S is exceptionally powerful.

It will turn out to be helpful to introduce some notations:

D :=
1

i
∇, d̄ξ :=

dξ

(2π)n
.

Definition 2.3 (Multiplication operator). For β ∈ Nn0 , we define a multiplication operator Mβ that
maps a function f : Rn → C to a function Mβf : Rn → C, defined as

(Mβf)(x) := xβf(x), x ∈ Rn.
1 Laurent Schwartz, 1915–2002, inventor of the distributions (after Sobolev), Fields medallist 1950

21
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Lemma 2.4. The multiplication operator Mβ and the differential operator Dα are continuous maps of
the Fréchet space S(Rn) into itself.

Definition 2.5 (Convolution in L1(Rn)). For functions f and g from L1(Rn), we define their convolu-
tion f ∗ g = (f ∗ g)(x) as

(f ∗ g)(x) :=

∫
Rny
f(x− y) · g(y) dy.

Lemma 2.6 (Properties of the Convolution). If f , g ∈ L1(Rn), then also f ∗ g ∈ L1(Rn), and

‖f ∗ g‖L1(Rn) ≤ ‖f‖L1(Rn) ‖g‖L1(Rn) .

Moreover, the convolution product is a bilinear and continuous map of S(Rn)× S(Rn) into S(Rn).

Proof. The inequality is an exercise in applying Fubini’s theorem. Concerning the second claim, we
estimate pk(f∗g). Differentiating under the integral sign with respect to x is allowed, hence f∗g ∈ C∞(Rn),
and then we wish to understand∣∣xβ∣∣ ∫

Rny
|∂αx f(x− y)| · |g(y)|dy

for |α|+ |β| ≤ k. Now we have

∣∣xβ∣∣ ≤ |x||β| ≤ (|x− y|+ |y|)|β| ≤
(

(1 + |x− y|) · (1 + |y|)
)|β|

= (1 + |x− y|)|β| · (1 + |y|)|β|

≤ Ck

(
k∑
i=0

|x− y|i
) k∑

j=0

|y|j
 ,

and therefore (with certainly a new Ck in every line)

pk(f ∗ g) ≤ Ck
∑
|α|≤k

k∑
i,j=0

sup
x∈Rn

∫
Rny

∣∣|x− y|i∂αx f(x− y)
∣∣ · ∣∣|y|jg(y)

∣∣ dy

≤ Ck
∑
|α|≤k

k∑
i,j=0

(
sup
z∈Rn

∣∣|z|i∂αz f(z)
∣∣) ∫

Rny

∣∣|y|ig(y)
∣∣ dy

≤ . . .
≤ Ckp2k(f) · pk+n+1(g),

because of |z| ≤ 1 + |z1|+ . . .+ |zn| and

‖u‖L1(Rn) =

∫
Rny

1

1 + |y|n+1
· (1 + |y|n+1)|u(y)|dy ≤ Cn

(∫
Rny

dy

1 + |y|n+1

)
· pn+1(u),

to be applied to the function u(y) = |y|ig(y).

2.1.2 The Fourier Transform on S(Rn)

Definition 2.7 (Fourier2 transform on S(Rn)). For f ∈ S(Rn), we define Ff = f̂ as

(Ff)(ξ) :=

∫
Rn
e−ix·ξf(x) dx, ξ ∈ Rn, x · ξ := x1ξ1 + · · ·+ xnξn,

called the Fourier transform of f .

We quickly check that f̂ ∈ C∞(Rn) for f ∈ S(Rn).

2 Jean Baptiste Joseph Fourier, 1768–1830
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Lemma 2.8. If f ∈ S(Rn) and α ∈ Nn0 , then

(F(Dα
xf))(ξ) = ξαf̂(ξ) = (Mα(Ff))(ξ), (2.2)

Dα
ξ f̂(ξ) = (−1)|α|x̂αf(x)(ξ) = (−1)|α|F(Mαf)(ξ). (2.3)

Sketch of proof. The first identity follows from integration by parts, the second from differentiation with
respect to a parameter.

The following commutative diagrams should be self-explanatory:

f
Dαx−−−−→ Dα

xf

F

y F

y
Ff

Mα−−−−→ F(Dα
xf)

= Mα(Ff)

f
Mα−−−−−→
·(−1)|α|

(−1)|α|Mαf

F

y F

y
Ff

Dαξ−−−−→ (−1)|α|F(Mαf)
= Dα

ξ (Ff)

Combining both equations reveals (observe the switched roles of α and β)∣∣∣(F(xβDα
xf(x))

)
(ξ)
∣∣∣ =

∣∣∣Dβ
ξ

(
ξαf̂(ξ)

)∣∣∣ .
Proposition 2.9. The Fourier transform is a continuous map from S(Rnx) into S(Rnξ ) in the sense that
for each k there is a constant Ck with

pk(f̂) ≤ Ckpk+n+1(f),

for each f ∈ S. Moreover, the Fourier transform preserves the S convergence,

fj
S−−−→

j→∞
f =⇒ f̂j

S(Rnξ )−−−−→
j→∞

f̂ .

Proof. Fix some k and some α, β with |α|+ |β| ≤ k. Then

sup
ξ

∣∣∣ξαDβ
ξ f̂(ξ)

∣∣∣ ≤ C ′k sup
ξ

∑
|γ|+|δ|≤k

∣∣∣Dγ
ξ

(
ξδ f̂(ξ)

)∣∣∣
= C ′k sup

ξ

∑
|γ|+|δ|≤k

∣∣∣(F(xγDδ
xf(x))

)
(ξ)
∣∣∣ ≤ C ′k ∑

|γ|+|δ|≤k

∥∥xγDδ
xf(x)

∥∥
L1(Rnx )

≤ Ckpk+n+1(f),

where we have used once again that ‖u‖L1(Rn) ≤ Cpn+1(u) for every u ∈ S(Rn), and also ‖v̂‖L∞ ≤
‖v‖L1 .

Proposition 2.10. The Fourier transform has the following property for f and g from S(Rn) and all
ξ ∈ Rn:

(f ∗ g) (̂ξ) = f̂(ξ) · ĝ(ξ).

Furthermore, we have for f , g ∈ S(Rn) and all x ∈ Rn the identity∫
Rnξ
eix·ξ f̂(ξ)g(ξ) dξ =

∫
Rny
f(x+ y)ĝ(y) dy. (2.4)

Proof. Note that f ∗g ∈ S(Rn) by Lemma 2.4, hence (f ∗g)̂exists, and the first statement is an insightful
exercise in using Fubini’s theorem. And finally we have∫

Rnξ
eix·ξ f̂(ξ)g(ξ) dξ =

∫
Rnξ
eix·ξ

(∫
Rny
e−iy·ξf(y) dy

)
g(ξ) dξ =

∫
Rny

(∫
Rnξ
ei(x−y)·ξg(ξ) dξ

)
f(y) dy

=

∫
Rny
ĝ(y − x)f(y) dy =

∫
Rny
ĝ(y)f(x+ y) dy.
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Again we have a commutative diagram:

(f, g)
∗−−−−→ f ∗ g

F

y F

y
(f̂ , ĝ)

·−−−−→ (f ∗ g)̂
= f̂ · ĝ

Corollary 2.11. From (2.4) we immediately obtain∫
Rn
f̂g dx =

∫
Rn
fĝ dx, f, g ∈ S(Rn), (2.5)

by setting x = 0 and renaming variables.

The next example prepares the inversion formula.

Example 2.12. Take f = f(x) = exp(−ax2) on R1, with <a > 0. Then

∂ξ f̂(ξ) = ∂ξ

∫
Rx
e−ix·ξf(x) dx =

∫
Rx

(−ix)e−ix·ξf(x) dx =
−i

−2a

∫
Rx
e−ix·ξ∂xf(x) dx

=
−1

2a

∫
Rx
e−ix·ξ(Dxf)(x) dx = − 1

2a
(Dxf) (̂ξ) = − ξ

2a
f̂(ξ),

and this ordinary differential equation (ODE) has the solution

f̂(ξ) = exp

(
− ξ

2

4a

)
f̂(0)

with an unknown constant f̂(0) =: I which can be found by

I2 =

∫∫
R2

exp(−a(x2 + y2)) dx dy =

∫ 2π

φ=0

∫ ∞
r=0

exp(−ar2)r dr dφ = 2π

∫ ∞
r=0

e−ar
2

r dr =
π

a
.

The final answer is (with the square root defined in C using a cut along (−∞, 0))

f̂(ξ) =

√
π√
a

exp

(
− ξ

2

4a

)
.

Next we take f = f(x) = exp(−a|x|2) on Rn with <a > 0. Then

f̂(ξ) =

∫
Rnx
e−i(x1ξ1+···+xnξn)f(x) dx =

n∏
k=1

(∫
R1
t

e−itξke−at
2

dt

)
=

(√
π√
a

)n
exp

(
−|ξ|

2

4a

)
.

Proposition 2.13 (Inverse Fourier transform on S(Rn)). The Fourier transform is an isomorphism
from S(Rnx) onto S(Rnξ ), and the inverse Fourier transform is given by

ϕ(x) =

∫
Rnξ
e+ix·ξϕ̂(ξ) d̄ξ, x ∈ Rn, ϕ̂ ∈ S(Rn). (2.6)

Proof. We wish to show that

(2π)nϕ(x) =

∫
Rnξ

(∫
Rny
ei(x−y)·ξϕ(y) dy

)
dξ,

for all ϕ ∈ S(Rn) and all x ∈ Rn. However, the integral on the RHS does not converge absolutely, so we
cannot swap the integrals.

Pick some ψ ∈ S(Rn). Then we know already from (2.4) that∫
Rnξ
eix·ξϕ̂(ξ)ψ(ξ) dξ =

∫
Rny
ϕ(x+ y)ψ̂(y) dy.
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In this equation, we choose ψ as ψ(ξ) = exp(−ε2|ξ|2), and then we have

ψ̂(y) =
πn/2

εn
exp

(
−|y|

2

4ε2

)
.

As next step, we substitute z := ε−1y and find∫
Rnξ
eix·ξϕ̂(ξ) exp(−ε2|ξ|2) dξ =

∫
Rny
ϕ(x+ y)

πn/2

εn
exp

(
−|y|

2

4ε2

)
dy

= πn/2
∫
Rnz
ϕ(x+ εz) exp

(
−|z|

2

4

)
dz.

We send ε to +0 and apply the Convergence theorem of Lebesgue, which yields∫
Rnξ
eix·ξϕ̂(ξ) dξ = πn/2ϕ(x)

∫
Rny

exp

(
−|z|

2

4

)
dz = πn/2ϕ(x) (4π)

n/2
= (2π)nϕ(x).

This was our goal.

We have only shown that the Fourier transform is an isomorphism between algebraic vector spaces.
However, Proposition 2.9 enables us to quickly prove that the Fourier transform is also a topological
isomorphism (exercise).

We draw some conclusions:

Remark 2.14. For any Schwartz function w, we have

ŵ(−x)(ξ) =

∫
Rnx
e−ix·ξw(−x) dx =

∫
Rny
eiy·ξw(y) dy = ŵ(−ξ),

(Fw)(ξ) = (2π)n(F−1w)(−ξ),

(FFw)(x) = (2π)nF
(

(F−1w)(−ξ)
)

(x) = (2π)n(FF−1w)(−x) = (2π)nw(−x).

Now choose Schwartz functions f and g. Then Schwartz functions u and v exist with f = û and g = v̂,
and we also have

f̂(ξ) = (FFu)(ξ) = (2π)nu(−ξ), ĝ(ξ) = (FFv)(ξ) = (2π)nv(−ξ).

Then we conclude, from Proposition 2.10, that

f̂g(ξ) = (F(fg)) (ξ) =
(
F(ûv̂)

)
(ξ) =

(
F
(
F(u ∗ v)

))
(ξ) = (2π)n(u ∗ v)(−ξ)

= (2π)n
∫
Rnη
u(−ξ − η)v(η) dη = (2π)n

∫
Rnζ
u(−ξ + ζ)v(−ζ) dζ

= (2π)−n
∫
Rnζ

(2π)nu(−(ξ − ζ)) · (2π)nv(−ζ) dζ

= (2π)−n
∫
Rnζ
f̂(ξ − ζ) · ĝ(ζ) dζ

=
(
f̂ ∗ ĝ

)
(ξ),

with ∗ as the convolution operator in the ξ–world (note the d̄η instead of dη):

(f̂ ∗ ĝ)(ξ) :=

∫
Rnη
f̂(η) · ĝ(ξ − η) d̄η. (2.7)

We draw an intermediate summary: the difference between the Fourier transform F and the inverse
transform F−1 are the exchange of exp(+ix · ξ) against exp(−ix · ξ), and an additional factor (2π)−n.
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2.1.3 The Fourier Transform on L2(Rn)

Proposition 2.15. The Fourier transform preserves the L2 scalar product (up to a factor (2π)n) in the
sense of

∀f, g ∈ S(Rn) :

∫
Rnx
f(x)g(x) dx =

∫
Rnξ
f̂(ξ)ĝ(ξ) d̄ξ,

Proof. We begin with∫
Rnξ
f̂(ξ)ĝ(ξ) d̄ξ = (2π)−n

∫
Rnξ
f̂(ξ)ĝ(ξ) dξ = (2π)−n

∫
Rnξ
f(x)̂̂g(x) dx,

from (2.5). Next we calculate

ĝ(ξ) =

∫
Rn
e+ix·ξg(x) dx = (2π)nF−1x→ξ

(
g(x)

)
(ξ),

and therefore ̂̂g = (2π)ng.

This property yields the Parseval3 identity :

‖f‖L2(Rnx ) =
∥∥∥f̂∥∥∥

L2(Rnξ )
:=

(∫
Rnξ
|f̂(ξ)|2 d̄ξ

)1/2

, ∀ f ∈ S(Rn).

The space L2(Rn) is of great physical importance because it has a scalar product. The definition of F on
L2(Rn) will be made possible by S(Rn) being sequentially dense in L2(Rn): for each f ∈ L2(Rn), there is
a sequence (f1, f2, . . . ) ⊂ S(Rn) with limj→∞ ‖fj − f‖L2(Rn) = 0. And because S(Rn) is a Fréchet space

(and L2(Rn) is a metric space), we are happy because in this setting sequentially dense means the same
as topologically dense (the topological closure of the smaller set is the bigger set).

Definition 2.16 (Fourier transform on L2(Rn)). For f ∈ L2(Rn), let (f1, f2, . . . ) ⊂ S(Rn) be a
sequence approximating f . Then we define

f̂(ξ) := lim
j→∞

f̂j(ξ).

This limit is independent of the choice of the sequence (f1, f2, . . . ). The convergence of the sequence

(f̂1, f̂2, . . . ) in the norm of L2(Rnξ ) follows from the Parseval formula.

2.2 The Fourier Transform Applied to Temperate Distributions

2.2.1 What are Distributions All About ?

We wish to define generalised functions (called temperate distributions) with the following properties:

• every “reasonable function” can be understood as a distribution, where “reasonable” could mean
measurability, absence of strong poles, and at most polynomial growth for |x| → ∞;

• every temperate distribution can be differentiated as often as we want, and the result is again a
temperate distribution;

• we have a meaning of a temperate distribution being the limit of a sequence of temperate distribu-
tions;

• we have various operations that we can let act upon temperate distributions (adding them, multi-
plying them by numbers and by smooth functions, computing their Fourier transforms, determining
their convolutions);

3 Marc–Antoine Parseval des Chênes, 1755–1836
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• these operations are continuous in a sense of appropriately chosen topological vector spaces, and
they coincide with the previously defined operations if the temperate distributions coincide with
smooth functions of moderate growth.

Unfortunately, we have a price to pay: it will not be possible to define products of distributions. In that
sense, the distribution theory will always be a linear theory.

2.2.2 The Space S′(Rn) of Temperate Distributions

Definition 2.17 (Temperate distribution). A map T : S(Rn) → C is called temperate distribution4

if T is linear and continuous. The set of all temperate distributions is called S′(Rn).

Example 2.18 (Regular distribution). A temperate distribution is provided by a function f = f(x)
with the property that

x 7→ f(x)

1 + |x|N
∈ L1(Rn)

for some N ∈ N, which will generate a distribution Tf via

Tf (ϕ) :=

∫
Rnx
f(x)ϕ(x) dx, ϕ ∈ S(Rn).

Such a distribution Tf is called regular distribution.

Every function with moderate growth can be seen as a temperate distribution.

Example 2.19 (Dirac’s Delta distribution5). Let x0 ∈ Rn. We define a map T via T (ϕ) =
〈T | ϕ〉S′×S := ϕ(x0).

Finally we mention that a function with fast growth for |x| → ∞ can be a temperate distribution as well:

Lemma 2.20. The function f = f(x) = exp(x) · cos(exp(x)) = ∂x(sin(exp(x))) generates a distribution
Tf ∈ S′(R1) in the sense of

〈Tf | ϕ〉S′×S := lim
R→∞

∫
|x|≤R

f(x)ϕ(x) dx.

Proof. This follows from∫
|x|≤R

f(x)ϕ(x) dx = sin(exp(x)) · ϕ(x)
∣∣∣x=R
x=−R

−
∫
|x|≤R

sin(exp(x)) · ϕ′(x) dx,

hence

〈Tf | ϕ〉S′×S = −
∫
R1

sin(exp(x)) · ϕ′(x) dx.

The reason is that there are two types of integrals in Rn that have to be distinguished. One is the usual
Lebesgue integral as in the definition of L1(Rn), the other is limR→∞

∫
|x|<R . . . dx. These are not the

same, as can be seen from the function g(x) = sin(x)
x which is integrable in the second sense, but not in

the first (recall that if g were a member of L1(Rn), then so would |g|).

4 Perhaps you will read sometimes the expression tempered distribution, even written by a native speaker of English.
Such authors have no taste.

5 Paul Adrien Maurice Dirac, 1902–1984
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We lift our investigations to a more abstract level.

Definition 2.21 (Canonical map of S(Rn) into S′(Rn)). We have a map6 ι : S(Rn) → S′(Rn) that
interprets a Schwartz function ψ as a temperate distribution ιψ, defined as

〈ιψ | ϕ〉S′×S :=

∫
Rn
ψ(x)ϕ(x) dx, ∀ϕ ∈ S(Rn).

From now on, we often write ιf instead of Tf . Both notations mean the same thing: the Schwartz function
f is being construed as a temperate distribution.

Lemma 2.22. This map ι is continuous and injective.

Proof. ι is continuous: We appeal to Proposition 1.59. Let pχ be any seminorm on S′(Rn). Then there
is some χ ∈ S(Rn) with

pχ(ιψ) =
∣∣〈ιψ | χ〉S′×S∣∣ ≤ ∫

Rn
|ψ(x)||χ(x)|dx ≤ ‖ψ‖L∞ ‖χ‖L1 = ‖χ‖L1 p0(ψ),

with p0 being the seminorm on S(Rn) as defined in (2.1).

ι is injective: Suppose ιψ = 0 ∈ S′, which means 〈ιψ | ϕ〉 = 0 for all ϕ ∈ S(Rn). Now choose ϕ(x) =

ψ(x), the complex conjugate. This gives ‖ψ‖2L2 = 0, hence ψ = 0 ∈ S(Rn).

We have the following operators:

∂α : S(Rn)→ S(Rn): continuous, by Lemma 2.4,

(∂α)t : S′(Rn)→ S′(Rn): defined in Definition 1.65. It is continuous, by Proposition 1.66

ι : S(Rn)→ S′(Rn) continuous and injective by Lemma 2.22, with img(ι) dense in S′(Rn) (by Lemma 2.37)

2.2.3 An Operation in S′(Rn): Taking Derivatives

For sake of clarity, we begin with the pedestrian approach.

We observe: if ϕ ∈ S(Rn) and f ∈ C∞b (Rn) (which shall mean that the smooth function f and all its
derivatives are bounded on Rn) then∫

Rn
(∂αx f(x))ϕ(x) dx = (−1)|α|

∫
Rn
f(x)(∂αxϕ(x)) dx,

which can be shown by repeated integration by parts. Using the concept of regular distributions, we write
this identity as〈

T∂αx f | ϕ
〉
S′×S = (−1)|α| 〈Tf | ∂αxϕ〉S′×S , ∀ϕ ∈ S(Rn).

Our goal is now to define a derivative ∂αxT for every temperate distribution T ∈ S′(Rn). The requirement
is that in case T is a regular distribution (hence being generated by a smooth function f in the sense of
T = Tf ), then

∂αxTf
!
= T∂αx f . (2.8)

Definition 2.23 (Derivative of a distribution). If T ∈ S′(Rn) and α ∈ Nn0 then ∂αxT is defined as

〈∂αxT | ϕ〉S′×S := (−1)|α| 〈T | ∂αxϕ〉S′×S , ∀ϕ ∈ S(Rn).

Lemma 2.24. This ∂αxT is a member of S′(Rn).

Proof. Exercise.

6pronounced iota
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If we identify a function f ∈ L1(Rn) and its associated regular distribution Tf ∈ S′(Rn), then we see that
each function f ∈ L1(Rn) will possess a derivative ∂αx f , which then usually will no longer be a function
from L1(Rn), but a distribution.

Lemma 2.25. If T ∈ S′(Rn) and 1 ≤ j, k ≤ n then

∂

∂xk

∂

∂xj
T =

∂

∂xj

∂

∂xk
T.

Proof. Exercise.

After the pedestrian approach, here comes the academic approach.

The identity (2.8) can be rewritten as

∂αx ◦ ι
!
= ι ◦ ∂αx . (2.9)

Beware that we have abused notation here: on the LHS, the ∂αx operates on a distribution from S′, but
on the RHS, the operator ∂αx operates on a function from S. It has been a physicist’s idea to use the same
notation for two different operations. Next we wish to understand how ∂αx (when applied to distributions)
relates to the transposed operator (∂αx )t (which is always being applied to distributions).

f ∈ S
∂αx acting in S−−−−−−−−−→ ∂αx f ∈ S

ι

y ι

y
ιf ∈ S′

∂αx acting in S′−−−−−−−−−→ (ι ◦ ∂αx )f
= (∂αx ◦ ι)f ∈ S′

Take some f ∈ S(Rn). Then we have, for all Schwartz functions ϕ,

〈∂αx (ιf) | ϕ〉S′×S = 〈ι∂αx f | ϕ〉S′×S
∣∣∣ by (2.9)

=

∫
Rn

(
∂αx f(x)

)
ϕ(x) dx

∣∣∣ Definition of ι

= (−1)|α|
∫
Rn
f(x)

(
∂αxϕ(x)

)
dx

∣∣∣ integration by parts

= (−1)|α| 〈ιf | ∂αxϕ〉S′×S
∣∣∣ definition of ι

= (−1)|α|
〈
(∂αx )t(ιf) | ϕ

〉
S′×S

∣∣∣ Definition 1.65 of (∂αx )t,

and then the conclusion is

∀T ∈ img(ι) : ∂αxT = (−1)|α|(∂αx )tT.

What is this observation good for ? Well, (∂αx )t is continuous (by Proposition 1.66), and since we also wish
∂αx to be continuous as a map from the distribution space S′ into itself, we have to define the distributional
derivative ∂αx as in Definition 2.23, since img(ι) is dense in S′.

2.2.4 An Operation in S′(Rn): Multiplying by Smooth Temperate Functions

Again, we present the pedestrian approach first.

Definition 2.26 (Multiplying T by a smooth function). Let T ∈ S′(Rn) and a ∈ C∞(Rn) with the
property that a(x) and all its derivatives ∂αx a(x) grow at most polynomially for |x| → ∞. Then we define
aT via

〈aT | ϕ〉S′×S := 〈T | aϕ〉S′×S , ∀ϕ ∈ S(Rn).
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Lemma 2.27. This expression aT is indeed a member of S′(Rn).

Proof. Exercise.

Lemma 2.28. If a = a(x) is as above, and T ∈ S′(Rn), then

∂

∂xj
(aT ) =

∂a

∂xj
T + a

∂T

∂xj

as an identity in the space S′(Rn).

Proof. Exercise.

And again, we also show the academic approach.

We have an operator Ma that multiplies a function ϕ ∈ S(Rn) by a smooth function a = a(x) which
has the above mentioned properties. Then Ma is a continuous map of S into itself. Definition 2.26 then
defines an operator Ma on the distribution space S′, and it can be shown that this operator equals (Ma)t

as defined in Definition 1.65.

2.2.5 An Operation in S′(Rn): Taking Fourier Transforms

We bring (2.5) in the form

〈Tϕ̂ | ψ〉S′×S =
〈
Tϕ | ψ̂

〉
S′×S

, ∀ϕ ∈ S, ∀ψ ∈ S,

which inspires us to define the Fourier transform T̂ for some T ∈ S′(Rn) like this:

Definition 2.29 (Fourier transform in S′). For T ∈ S′(Rn), we define T̂ ∈ S′(Rn) by the identity〈
T̂ | ϕ

〉
S′×S

:= 〈T | ϕ̂〉S′×S , ∀ϕ ∈ S(Rn).

Lemma 2.30. This map

T 7→ T̂ , S′ → S′,

is the transposed map (as defined in Definition 1.65) to the Fourier transform

F : ϕ 7→ ϕ̂, S→ S.

Proof. This is immediate from〈
FtT | ϕ

〉
S′×S = 〈T | Fϕ〉S′×S = 〈T | ϕ̂〉S′×S =

〈
T̂ | ϕ

〉
S′×S

,

valid for all ϕ ∈ S(Rn).

Proposition 1.68 is waiting for an application, and here it goes:

Corollary 2.31. The Fourier transform map Ft : S′ → S′ is continuous, and it is an isomorphism.

Example 2.32. What is δ̂ ?〈
δ̂ | ϕ

〉
S′×S

:= 〈δ | ϕ̂〉S′×S = ϕ̂(0) =

∫
Rn
e−i0·x · ϕ(x) dx = 〈1 | ϕ〉S′×S .

Answer: the Fourier transform of Dirac’s delta is that function which is one everywhere.

Lemma 2.33. The following identities are valid for every T ∈ S′:

Ft(DαT ) = Mα(FtT ),

Ft(MαT ) = (−1)|α|Dα(FtT ),

with the multiplication operators Mα as in Definition 2.3.
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Proof. The first identity is shown like this:〈
Ft(DαT ) | ϕ

〉
S′×S = 〈DαT | Fϕ〉S′×S

∣∣∣ Definition 2.29

= (−1)|α| 〈T | Dα(Fϕ)〉S′×S
∣∣∣ Definition 2.23

= (−1)|α|(−1)|α| 〈T | F(Mαϕ)〉S′×S
∣∣∣ Lemma 2.8

=
〈
FtT |Mαϕ

〉
S′×S

∣∣∣ Definition 2.29

=
〈
Mα(FtT ) | ϕ

〉
S′×S

∣∣∣ Definition 2.26.

And for the second identity, the reasoning is similar:〈
Ft(MαT ) | ϕ

〉
S′×S = 〈MαT | Fϕ〉S′×S = 〈T |Mα(Fϕ)〉S′×S = 〈T | F(Dαϕ)〉S′×S

=
〈
FtT | Dαϕ

〉
S′×S = (−1)|α|

〈
Dα(FtT ) | ϕ

〉
S′×S .

Now remember that ϕ ∈ S can be chosen arbitrarily.

The identities here are very similar to those of Lemma 2.8, the only difference is that F has become Ft,
and now it we have equations in S′ instead of S before.

Example: Let T = 1. What is FtT ?

We calculate like this:〈
Ft1 | ϕ

〉
S′×S = 〈1 | ϕ̂〉S′×S =

∫
Rnξ
ϕ̂(ξ) dξ = (2π)n

∫
Rnξ
ei0ξϕ̂(ξ) d̄ξ = (2π)n

(
F−1{ϕ}

)
(x = 0)

= (2π)nϕ(0) = (2π)n 〈δ | ϕ〉S′×S ,

and therefore Ft1 = (2π)nδ.

Example: In R1, what is Ft{x2} ?

Observe that x2 = Mx21, hence the previous lemma yields

Ft(Mx21) = (−1)2D2
x(Ft1) = +(−i∂x)2(Ft1) = −∂2x((2π)1δ) = −2πδ′′.

2.2.6 An Operation in S′(Rn): Substituting the Variable

What is the reason why we have δ(ax) = 1
aδ(x) for x ∈ R1 and a > 0 ?

We recall that we have a sequence (f1, f2, . . . ) ⊂ S(R1) that approximates δ in the sense of

Tfj
S′−−−→

j→∞
δ.

These functions fj satisfy fj(x) ≥ 0 for all j and x, and

lim
j→∞

fj(x) =

{
0 : x 6= 0,

+∞ : x = 0,

∫ ∞
−∞

fj(x) dx = 1.

The convergence property then means limj→∞
∫∞
−∞ fj(x)ϕ(x) dx = ϕ(0), for all ϕ ∈ S(R1).

The calculation∫ ∞
−∞

fj(ax)ϕ(x) dx =

∫ ∞
−∞

fj(z)ϕ
(z
a

) 1

a
dz

C−−−→
j→∞

ϕ(0) · 1

a
=

1

a
〈δ | ϕ〉S′×S

then motivates our approach.

Definition 2.34 (Substitution inside a distribution). Let A ∈ Rn×n be an invertible matrix, and
T ∈ S′(Rn). Then we define

〈T (Ax) | ϕ(x)〉S′(Rnx )×S(Rnx ) :=
1

|detA|
〈
T (x) | ϕ(A−1x)

〉
S′(Rnx )×S(Rnx )

.
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Example 2.35. If the matrix A describes a scaling by the factor λ, then

〈T (λx) | ϕ(x)〉S′×S =
1

|λ|n
〈
T (x) | ϕ

(x
λ

)〉
S′×S

.

Example 2.36. If A describes a rotation or reflection, then A is an orthogonal matrix, hence

〈T (Ax) | ϕ(x)〉S′×S =
〈
T (x) | ϕ(A>x)

〉
S′×S .

2.2.7 Surprising Properties of Distributions

Why are mathematical distributions called distributions, by the way ? In common language, to distribute
something means to dispense it, to scatter it, to disseminate it. If you have 17 units of some stuff, and
you scatter it somehow, then you can describe the density of that stuff by an L1(R3) function f = f(x)
with f(x) ≥ 0 for obvious reasons, and

∫
R3 f(x) dx = 17. On the other hand, if you decide to concentrate

all 17 units of that stuff at the point called x0, then you describe this situation by the mathematical term
17δ(x− x0).

Mathematical distributions have been invented to generalise both situations. In particular, each L1 func-
tion can be construed as a distribution.

It comes as a surprise that although functions f ∈ L1(Rn) usually do not possess derivatives in the usual
sense of limits of quotients of differences, they do in the distributional sense: to each f ∈ L1(Rn), there is
a regular distribution Tf ∈ S′(Rn), and this distribution always possesses any derivative ∂αxTf , although
f does not.

Another surprise: ∂x is a continuous operator from S′ into S′. This means that if a sequence (f1, f2, . . . )
of functions converges in the topology of S′ to some limit f , then also the sequence of derivatives
(f ′1, f

′
2, f
′
3, . . . ) has the limit f ′ in the sense of S′. Why is that surprising ?

Well, take fj(x) = 1
j sin(jx) for x ∈ R1. Then we have

fj(x)
uniformly−−−−−−→
j→∞

0,

which has the immediate consequence

fj
S′(R)−−−→
j→∞

0, and therefore f ′j
S′(R)−−−→
j→∞

0,

but this sequence f ′j(x) is obviously the sequence

cos(x), cos(2x), cos(3x), cos(4x), . . .

and the claim means that this sequence of ever faster oscillating cosine functions converges to the zero
function.

It gets even more mysterious when we choose the function gj(x) = 1
j sin(j3x), which again converges (even

uniformly) to the zero function. But their derivatives are g′j(x) = j2 cos(j3x), and now even the amplitude
explodes for j →∞, but the sequence g′j still approaches the zero function.

The advantage of the concept of distributions is that sequences that converge in S′ can be differentiated
as often as we wish. The disadvantage is that sometimes we do not properly visualise what this limit
actually means.

2.2.8 Duality Magic

The purpose of this part is to show that the natural embedding of S(Rn) into S′(Rn) has a dense image,
by means of excessive use of duality arguments.

We recall the map ι : S(Rn)→ S′(Rn) that interprets a Schwartz function ψ as a distribution ιψ:

〈ιψ | ϕ〉S′×S :=

∫
Rn
ψ(x)ϕ(x) dx, ∀ϕ ∈ S(Rn).
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Proposition 2.37. This map ι has dense range: img(ι) is a dense subset of S′(Rn).

The proof is done in four steps.

Step 1 (already done): We have shown in Lemma 2.22 that ι is continuous and injective. Due to this
injectivity, the map ι turns into an embedding S ↪→ S′. And because ι is continuous, the transposed
map

ιt : S′′ → S′

is continuous as well.

Step 2 (open): S′′ = S, up to an algebraic isomorphism

Step 3 (open): ιt is injective

Step 4: Conclusion of the proof: By Proposition 1.67, the operator ι then has dense range. This
means that the embedding S ↪→ S′ is dense, which is what we wanted to show.

Lemma 2.38. There is an algebraic isomorphism J : S→ S′′ that is continuous.

We note that J−1 cannot be continuous, because S and S′′ have different topologies (only one of them is
metrisable).

Proof. We define a map J : S→ S′′ as

〈Jψ | T 〉S′′×S′ := 〈T | ψ〉S′×S , ∀T ∈ S′,

and obviously J is linear.

J is injective: if Jψ = 0 ∈ S′′ for some ψ ∈ S, then we obtain, for all T ∈ S′,

0 = 〈0 | T 〉S′′×S′ = 〈Jψ | T 〉S′′×S′ = 〈T | ψ〉S′×S .

Now it suffices to choose T = ιψ to deduce that ‖ψ‖L2 = 0.

J is continuous: according to Definition 1.64 , the seminorms on S′′ are given via all T ∈ S′:

pT : f 7→ pT (f) :=
∣∣〈f | T 〉S′′×S′ ∣∣ , ∀f ∈ S′′.

Choose some T ∈ S′. Then

pT (Jψ) =
∣∣〈Jψ | T 〉S′′×S′ ∣∣ =

∣∣〈T | ψ〉S′×S∣∣ ≤ CT pm(ψ),

with pm from (2.1) because T is a continuous map from S into C. Now apply Proposition 1.59 to
deduce that J is indeed continuous as a map from S to S′′.

J is surjective: we will prove that

∀f ∈ S′′ ∃ψf ∈ S : 〈f | T 〉S′′×S′ = 〈T | ψf 〉S′×S , ∀T ∈ S′. (2.10)

Let us be given f ∈ S′′. Because f is continuous as a map from S′ into C, Proposition 1.59 gives us
finitely many seminorms pϕ1

, pϕ2
, . . . , pϕK on S′ with∣∣〈f | T 〉S′′×S′ ∣∣ ≤ C (pϕ1

(T ) + pϕ2
(T ) + . . .+ pϕK (T ))

with C depending only on f , hence

∣∣〈f | T 〉S′′×S′ ∣∣ ≤ C K∑
j=1

∣∣∣〈T | ϕj〉S′×S∣∣∣ , ∀T ∈ S′. (2.11)
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We may assume that the functions ϕ1, . . . , ϕK are linearly independent, otherwise we will drop
some of them and increase C if needed. By a Gram–Schmidt argument, there are functions ψ1, ψ2,
. . . , ψK ∈ S with

span(ϕ1, . . . , ϕK) = span(ψ1, . . . , ψK) and

∫
Rn
ψjψ` dx = δj`,

hence
〈
ιψj | ψ`

〉
S′×S = δj`. We can express each ϕj as a linear combination of the ψ`, and then (2.11)

turns into

∣∣〈f | T 〉S′′×S′ ∣∣ ≤ C K∑
j=1

∣∣∣〈T | ψj〉S′×S∣∣∣ , ∀T ∈ S′, (2.12)

with a new value of C. Remember that C does not depend on T .

For each T ∈ S′, we build T0 := T −
∑K
j=1 〈T | ψj〉S′×S ιψj . Now (2.12) must also hold with T0

instead of T :

∣∣〈f | T0〉S′′×S′∣∣ ≤ C K∑
`=1

∣∣〈T0 | ψ`〉S′×S∣∣ .
Now what is 〈T0 | ψ`〉 ? We calculate

〈T0 | ψ`〉S′×S = 〈T | ψ`〉S′×S−
K∑
j=1

〈T | ψj〉S′×S
〈
ιψj | ψ`

〉
S′×S = 〈T | ψ`〉S′×S−〈T | ψ`〉S′×S = 0,

which enforces 〈f | T0〉S′′×S′ = 0. But then we conclude that

〈f | T 〉S′′×S′ = 〈f | T0〉S′′×S′ +

〈
f |

K∑
j=1

〈T | ψj〉S′×S ιψj

〉
S′′×S′

=

K∑
j=1

〈T | ψj〉S′×S
〈
f | ιψj

〉
S′′×S′

=

〈
T |

K∑
j=1

〈
f | ιψj

〉
S′′×S′ ψj

〉
S′×S

,

which suggests the choice ψf :=
∑K
j=1

〈
f | ιψj

〉
S′′×S′ ψj . Now look at (2.10).

Hence we have shown J to be linear, bijective, and continuous.

Now that we know how the elements of S′′ look like, we have much better prospects of showing that ιt is
injective:

Lemma 2.39. The transposed map ιt : S′′ → S′ is injective.

Proof. Assume ιtf = 0 ∈ S′ for some f ∈ S′′. Since J is surjective, there is some ψf ∈ S with f = Jψf .
Then we can calculate as follows, for each ϕ ∈ S:

0 = 〈0 | ϕ〉S′×S =
〈
ιtf | ϕ

〉
S′×S = 〈f | ιϕ〉S′′×S′ = 〈Jψf | ιϕ〉S′′×S′

We choose ϕ = ψf and see

0 =
〈
Jψf | ιψf

〉
S′′×S′ =

〈
ιψf | ψf

〉
S′×S =

∫
Rn
|ψf (x)|2 dx,

which implies ψf ≡ 0, hence f = 0 ∈ S′′.
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Applications of the Fourier
Transform

3.1 Signal Theory

Suppose f = f(t) describes an acustic signal, with t ∈ R as time variable. Then the Fourier transform

f̂ = f̂(τ) describes the strength of the frequency τ ∈ R in the signal.

Similarly in a two-dimensional setting: consider a function u = u(x, y) that describes an image. Then the
Fourier transform can be used (with a lot of work not mentioned here) to detect properties of the image
such as edges.

3.2 Statistics

The Fourier transform is often used for times series analysis and for the statistics of stochastic processes.

3.3 Partial Differential Equations

Suppose we wish to solve

∂2

∂x21
u(x1, x2)− ∂2

∂x1∂x2
u(x1, x2) + 13

∂2

∂x22
u(x1, x2)− u(x1, x2) = f(x1, x2), (x1, x2) ∈ R2,

for u, where f ∈ S(R2) is given. You apply the Fourier transform and find(
− ξ21 + 2ξ1ξ2 − 13ξ22 − 1

)
û(ξ1, ξ2) = f̂(ξ1, ξ2), ∀(ξ1, ξ2) ∈ R2.

The big bracket on the LHS is never zero, hence you can divide,

û(ξ1, ξ2) =
−1

ξ21 − 2ξ1ξ2 + 13ξ21 + 1
f̂(ξ1, ξ2),

and then you can write down a formula for u(x1, x2):

u(x1, x2) =
1

(2π)2

∫
ξ∈R2

ei(x1ξ1+x2ξ2)
−1

ξ21 − 2ξ1ξ2 + 13ξ21 + 1
f̂(ξ1, ξ2) dξ.

It is a lot of work (left to future courses) to draw conclusions from this formula, and in particular to handle
also the important case when the denominator can become zero. What we can say already is this: for
each f ∈ S(R2), there is a unique solution u, and it belongs to S(R2) as well, and it depends continuously
on f , measured in the topology of the Schwartz space.

35
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As a final example, we wish to solve{
∂tu(t, x)− 194u(t, x) = 0, (t, x) ∈ [0,∞)× Rn,

u(0, x) = u0(x), x ∈ Rn,

where u0 ∈ S(Rn) is given and u is wanted. Fourier transform with respect to x implies{
∂tû(t, ξ) + 19|ξ|2û(t, ξ) = 0, (t, ξ) ∈ [0,∞)× Rn,

û(0, ξ) = û0(ξ), ξ ∈ Rn,

which has the solution û(t, ξ) = exp(−19|ξ|2t)û0(ξ), and now the inverse Fourier transform can be applied,
where Proposition 2.10 comes in handy. Compare also Example 2.12. The details are left to the readers.
You will obtain an explicit formula for the solution u that is valid not only for u0 ∈ S(Rn), but for locally
integrable functions u0 with at most polynomial growth as well.
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