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The maps of shape T (x) = xt + Trqn/q(x
k) combine in an interesting way

the additive and multiplicative structures of Fqn and serve as a source for
maps with special properties required in different areas of applications. In
this paper we briefly survey known results on such permutations and con-
tinue their study. We prove that if T (x) is bijective on Fqn then necessarily

gcd(t, qn−1) = 1. We show that F (x) = xq
2+q+1 +Trq3/q(x) has very special

properties on Fq3 by determining explicitly its iterates, the inverse map, the
set of fixed points and its cycle structure.
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1 Introduction

Let q be a prime power and Fq be the finite field with q elements. Given a univariate
polynomial F (X) ∈ Fq[X], its associated map F is defined by

F : Fq → Fq, x 7→ F (x).

The associated maps of polynomials F (X) and G(X) are equal on Fq if and only if
F (X) ≡ G(X) (mod Xq − X). In particular, the associated maps of two different
polynomials of degree less than q are different. The number of different maps of Fq into
itself is qq, which is also the number of different polynomials of degree less than q in
Fq[X]. This shows that any map g of Fq into itself is the associated map of a unique
polynomial over Fq of degree less than q, which is called the reduced polynomial of g.
The degree of the map g is the degree of its reduced polynomial.

A polynomial over Fq is called a permutation polynomial of Fq if it induces a permu-
tation on Fq. The degree of a permutation on Fq and the non-zero terms in its reduced
polynomial form are basic algebraic characteristics of it, which are important parame-
ters for its implementation costs. The cycle decomposition of a permutation provides
information on both algebraic as well as combinatorial properties of it. One of the main
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current challenges in the research on permutations of finite fields is finding connections
between their polynomial representations and combinatorial properties. At present, this
is studied for very few families of permutation polynomials [1, 3, 6, 11, 13, 15, 17, 18].
A brief summary on classes of permutation polynomials with known cycle structure is
given in [18]. The latter reference describes also an application of permutation poly-
nomials with known cycle structure in coding theory. Inverses of permutations used in
coding theory or cryptology must often satisfy some special requirements [2, 18]. Since
for a generic permutation it is difficult to obtain relevant informations on its inverse,
it is significant to have constructions of permutation polynomials, for which the inverse
polynomial is also explicitly known.

2 Permutation polynomials of form Xt + γ Trqn/q(X
k)

An interesting class of permutation polynomials, which need to be better understood
is that of shape Xt + Trqn/q(X

k), where γ ∈ F∗
qn and 1 ≤ t, k ≤ qn − 1 are integers.

These polynomials combine the multiplicative and additive structure of the field Fqn in
a simple manner, so that there could be a good chance to describe special properties of
induced permutations.

Permutations xt + Trqn/q(x
k) were first considered for a prime q in [4, 5, 10]. In [11]

several families of such permutations were found when q is odd. A further class of such
permutations is described for q = 3r, r ≥ 2, in [14]. The case q even is treated in detail
in [12].

The next theorem shows that in search for permutation polynomials of shape Xt +
Trqn/q(X

k) only exponents 1 ≤ t ≤ qn − 1 which are coprime with qn − 1 need to be
considered.

Theorem 2.1. Let n ≥ 1, 1 ≤ t ≤ qn − 1, γ ∈ Fqn and f : Fqn → Fq be an arbitrary
map. If the map F (x) = xt + γf(x) is a permutation of Fqn, then gcd(t, qn − 1) = 1.

Proof. Let α be a fixed nonzero element in Fqn with Trqn/q(αγ) = 0. Consider the map
g : Fqn → Fq defined by

g(x) = Trqn/q(αF (x)) = Trqn/q(α(xt + γf(x)))

Since F is a permutation of Fqn , every y ∈ Fq has qn−1 preimages in Fqn under g, i. e.∣∣g−1(y)
∣∣ = qn−1. Further observe that

g(x) = Trqn/q(α(xt + γf(x))) = Trqn/q(αx
t) + f(x) Trqn/q(αγ) = Trqn/q(αx

t),

due to the choice of α. Let d = gcd(t, qn − 1). Then the power map x 7→ xt is d-to-1 on
F∗
qn . This shows that d must divide

∣∣g−1(y)
∣∣ = qn−1 if y 6= 0, completing the proof.

The above proof works for a larger class of maps on Fqn . Recall that f : Fqn → Fq is
called balanced if for every y ∈ Fq, the cardinality of {x ∈ Fqn : f(x) = y} is qn−1.
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Theorem 2.2. Let G,H : Fqn → Fqn. Suppose there exists an element α ∈ F∗
qn such that

the map h(x) = Trqn/q(αH(x)) is constant on Fqn and the map g(x) = Trqn/q(αG(x)) is
not balanced. Then the sum G+H is not a permutation of Fqn.

Proof. The proof follows from the observation, that if G + H is a permutation of Fqn ,
then necessarily the map Trqn/q(α(G(x) +H(x))) = g(x) + h(x) is balanced.

Observe that Trqn/q(αH(x)) is constant on Fqn if and only if the image set of H is
contained in a coset of the hyperplane Hα = {x ∈ Fqn : Trqn/q(αx) = 0}. In particular
such an α exists if H(X) is an affine q-polynomial with a nontrivial kernel.

The next result demonstrates a specific application of Theorem 2.2.

Corollary 2.3. Let L : Fqn → Fqn be a q-linear map with an image set contained in
Hα for some α ∈ F∗

qn. Furthermore, let t be a positive integer with gcd(t, qn − 1) > 1,
P : Fqn → Fqn a permutation and K : Fqn → Fqn arbitrary. Then P (x)t + L(K(x)) is
not a permutation on Fqn.

Remark 2.1. Arguments similar to ours in the proofs of Theorem 2.1 and Theorem 2.2
are used in [16], where permutation polynomials Xt + L(X) are studied, where L(X) is
a linearized polynomial.

By Theorem 2.1, any permutation polynomial T (X) = Xt + Trqn/q(X
k) satisfies

gcd(t, qn − 1) = 1. Let t−1 be the inverse of t modulo qn − 1. Then T (Xt−1
) =

X + γ Trqn/q(X
k·t−1

) is a permutation polynomial as well. Hence to characterize all

permutation polynomials of shape Xt + Trqn/q(X
k) it is enough to consider those with

t = 1. Note that if k defines such a permutation then the same permutation can be
obtained with k · q too, because of Trqn/q(x

q·k) = Trqn/q(x
k). The next theorem lists the

currently known permutation polynomials of type X + Trqn/q(X
k) for q odd. The cases

(a)-(i) are from [10], and (j) from [14]. The case (k) can be obtained for example using
results on permutations constructed via linear translators from [11]. For the case q even
we refer to [12].

Theorem 2.4. Let q = ps, where p is an odd prime and s ≥ 1. Then

F (X) = X + γ Trqn/q(X
k) ∈ Fqn [X]

is a permutation polynomial in each of the following cases.

(a) n = 2, q ≡ ±1 (mod 6), γ = −1/3, k = 2q − 1,

(b) n = 2, q ≡ 5 (mod 6), γ3 = −1/27, k = 2q − 1,

(c) n = 2, q ≡ 1 (mod 3), γ = 1, k = (q2 + q + 1)/3,

(d) n = 2, q ≡ 1 (mod 4), (2γ)(q+1)/2 = 1, k = (q + 1)2/4,

(e) n = 2, q = Q2, γ = −1, k = Q3 −Q+ 1,

(f) n = 2, q = Q2, γ = −1, k = Q3 +Q2 −Q,
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(g) n = 3, γ = 1, k = (q2 + 1)/2,

(h) n = 3, γ = −1/2, k = q2 − q + 1,

(i) n = 2lr, γq
2l−1 = −1, k = ql + 1, where l, r are positive integers,

(j) n = 2, q = 3s, s ≥ 2, γ(q−1)/2 = (γ − 1)(q−1)/2, k = 32s−1 + 3s − 3s−1,

(k) n ≥ 2, (−Trqn/q(γ))(q−1)/(pd−1) 6= 1, k = pi, where 1 ≤ i ≤ s and d = gcd(i, s).

Remark 2.2. It can be easily checked that k = 2q − 1 satisfies gcd(k, q2 − 1) = 1 if
q ≡ 1 (mod 3) and gcd(k, q2 − 1) = 3 if q ≡ −1 (mod 3). This observation with
Theorem 2.4(a) show that in contrast to t the exponent k need not be coprime with
qn − 1 if xt + γ Trqn/q(x

k) is a permutation on Fqn . For all exponents k appearing in
Theorem 2.4 the numbers gcd(k, qn − 1) are explicitly determined in [8].

For a permutation polynomial P (X) on Fq and an integer 1 ≤ ` ≤ q−1 with gcd(`q−
1) = 1, the polynomial P (X`) induces a permutation on Fq as well. In general, the
connections between cycle decompositions of permutations P (X) and P (X`) are not
straightforward. Section 3 shows that the permutation C(xq

2+q+1) with C(x) as in
Theorem 2.4(g) has a very special cycle structure.

3 Permutation Xq2+q−1 + Trq3/q(X) on Fq3

In this section, we consider the reduced permutation polynomial F (X) on Fq3 associated
to the map given by

F (x) = (x+ Trq3/q(x
(q2+1)/2)) ◦ (xq

2+q−1),

which is obtained by composing the permutation described in case (g) of Theorem 2.4
with the permutation x 7→ xq

2+q−1. We describe explicitly the iterates of F and then
use this to determine its cycle structure and the polynomial representation of its inverse
map.

It is easy to check that

(q2 + q − 1) · q
2 + 1

2
=

(q3 − 1)(q + 1)

2
+ q ≡ q (mod q3 − 1)

and therefore
F (X) = Xq2+q−1 + Trq3/q(X).

Further, for x 6= 0, we have

F (x) =
xq

2+q + x(x+ xq + xq
2
)

x
= x+

Trq3/q(x
q+1)

x
,

and hence

F (x) =

{
x+

Trq3/q(x
q+1)

x , x ∈ F∗
q3

0, x = 0.
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In the remaining part of this section, we use the convention 0/0 = 0 and write

F (x) = x+
Trq3/q(x

q+1)

x
for all x ∈ Fq3 .

The following two lemmas describe computational connections in Fq3 , which are fun-
damental for the results of this section.

Lemma 3.1. Any x ∈ Fq3 satisfies

x3 − Trq3/q(x)x2 + Trq3/q(x
q+1)x−Nq3/q(x) = 0, (1)

where Nq3/q(x) = x1+q+q
2

is the norm of x over Fq.
Proof. Any x ∈ Fq clearly fulfils (1). Let hence x ∈ Fq3 \ Fq and m(X) ∈ Fq[X] be the

minimal polynomial of x over Fq. Since m(X) = (X − x)(X − xq)(X − xq2) in Fq3 [X],
we get

m(X) = X3 − Trq3/q(x)X2 + Trq3/q(x
q+1)X −Nq3/q(x),

implying the statement.

Lemma 3.2. Let x ∈ F∗
q3. Then we have

(a) Trq3/q

(
1

x

)
=

Trq3/q(x
q+1)

Nq3/q(x)
;

(b) Trq3/q

(
1

xq+1

)
=

Trq3/q(x)

Nq3/q(x)
;

(c) Trq3/q

(
1

xq−1

)
+ Trq3/q(x

q−1) = Trq3/q(x
q+1) Trq3/q

(
1

xq+1

)
− 3.

Proof. Property (a) follows from

Trq3/q

(
1

x

)
=

1

x
+

1

xq
+

1

xq2
=
xq

2+q + xq
2+1 + xq+1

x1+q+q2
=

Trq3/q(x
q+1)

Nq3/q(x)
.

This also shows that

Trq3/q(x) =
Trq3/q

(
1

xq+1

)
Nq3/q

(
1
x

) = Trq3/q

(
1

xq+1

)
Nq3/q(x),

from which (b) follows. For (c), note that

Trq3/q(x
q+1) Trq3/q

(
1

xq+1

)
= Trq3/q

(
Trq3/q(x

q+1)

xq+1

)

= Trq3/q

(
xq+1 + xq

2+q + xq
3+q2

xq+1

)
= Trq3/q(1 + xq

2−1 + xq
2−q)

= 3 + Trq3/q

(
1

xq−1

)
+ Trq3/q(x

q−1).
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Theorem 3.3. Let
Fix(F ) = {x ∈ Fq3 : F (x) = x}

be the set of fixed points of F (x) = x+ (Trq3/q(x
q+1))/x. Then we have

Fix(F ) = {x ∈ Fq3 : Trq3/q(x
q+1) = 0} = {0} ∪ {x ∈ F∗

q3 : Trq3/q(x
−1) = 0}.

In particular, |Fix(F )| = q2.

Proof. By definition of F , it is straightforward, that

Fix(F ) = {x ∈ Fq3 : Trq3/q(x
q+1) = 0}.

Lemma 3.2(a) completes the proof.

Claim. For an integer n ≥ 0, set

an =
4n + (−2)n − 2

9
,

bn =
(−2)n − 1

3
,

cn = an+1 − an =
4n − (−2)n

3
,

dn = bn+1 − bn = −(−2)n.

Then all these numbers are integers and they satisfy

b2n + 2an − bn = cn (2)

−(cnbn + dnan) = cn (3)

dnbn = −cn (4)

Proof. Equations (2)–(4) can be easily checked by the following direct calculations:

b2n + 2an − bn =
((−2)n − 1)2

9
+

2 · 4n + 2 · (−2)n − 4

9
− (−2)n − 1

3

=
4n − 2(−2)n + 1 + 2 · 4n + 2(−2)n − 4

9
− (−2)n − 1

3

=
4n − 1− ((−2)n − 1)

3
=

4n − (−2)n

3
;

−(cnbn + dnan) = −
(

4n − (−2)n

3
· (−2)n − 1

3
− (−2)n · 4n + (−2)n − 2

9

)
= −(4n − (−2)n)((−2)n − 1)− (−2)n(4n + (−2)n − 2)

9

= −4n(−2)n − 4n − 4n + (−2)n − 4n(−2)n − 4n + 2(−2)n

9

= −(−2)n − 4n

3
=

4n − (−2)n

3
;

dnbn = −(−2)n · (−2)n − 1

3
= −4n − (−2)n

3
.
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Note that

bn =

{
(2n − 1)/3, n even,

−(2n + 1)/3, n odd.

Recall that 3 = 22 − 1 divides 2n − 1 if and only if n is even. Consequently, 3 divides
2n + 1 if and only if n is odd. These observations show, that bn is an integer. Since
cn = −dnbn and 2an = cn − b2n + bn, these numbers are also integers.

Remark 3.1. By abuse of notation, we use the same symbol a for an integer number a
and an element a mod p of a prime field Fp. In the remainder of this chapter, we use
a/3 to denote elements in Fp not only for p ≥ 5 but also in F3. In the latter case, we
assume that the integer a is divisible by 3 and the quotient a/3 is computed in the ring
of integers.

For an integer n ≥ 0, set

Fn(x) = (F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
n

)(x)

to denote the nth iterate of F .

Theorem 3.4. Let q be a power of an odd prime and

F (x) = x+
Trq3/q(x

q+1)

x

on Fq3. Then for n ≥ 0, we have

Fn(x) = an
Trq3/q(x

q+1)2

Nq3/q(x)
− bn

Trq3/q(x
q+1)

x
+ x, (5)

where an = (4n + (−2)n − 2)/9 and bn = ((−2)n − 1)/3.

Proof. For n ≥ 0, we put cn = an+1−an = (4n−(−2)n)/3 and dn = bn+1−bn = −(−2)n

and define

Fn(x) = an
Trq3/q(x

q+1)2

Nq3/q(x)
− bn

Trq3/q(x
q+1)

x
+ x.

We aim to prove that Fn(x) = Fn(x).
First, consider x ∈ Fq. Then we have Trq3/q(x

q+1) = 3x2 and Nq3/q(x) = x3, implying

F (x) = x+
3x2

x
= 4x,

and

Fn(x) = an
9x4

x3
− bn

3x2

x
+ x = (9an − 3bn + 1)x

= (4n + (−2)n − 2− (−2)n + 1 + 1)x = 4nx = Fn(x).

7



The statement is obviously true also for x ∈ Fix(F ), since in this case Trq3/q(x
q+1) =

0. We apply induction on n to prove the identity for the remaining cases. Hence let
x ∈ Fq3 \ Fq and Trq3/q(x

q+1) 6= 0. The statement is true for n = 0 and n = 1. Our goal
is to show that

Fn+1(x) = Fn+1(x) = F (Fn(x)) = F (Fn(x)) = Fn(x) +
Trq3/q(Fn(x)q+1)

Fn(x)
,

or equivalently
(Fn+1(x)− Fn(x)) · Fn(x) = Trq3/q(Fn(x)q+1),

holds, if Fn(x) = Fn(x). In the rest of the proof, we use the following abbreviations:

L(x) = (Fn+1(x)− Fn(x)) · Fn(x)

R(x) = Trq3/q(Fn(x)q+1)

and Tr = Trq3/q, N = Nq3/q, u(x) = Trq3/q(x
q+1). Our goal is to show L(x) = R(x) for

all x ∈ Fq3 \ Fq with u(x) 6= 0. First, observe that R(x) can be written as follows:

R(x) = Tr

[(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)q
·
(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)]
= Tr

[(
an
u(x)2

N(x)
− bn

u(x)

xq
+ xq

)
·
(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)]
= Tr

[
a2n
u(x)4

N(x)2
+ b2n

u(x)2

xq+1
− anbn

u(x)3

N(x)

(
1

x
+

1

xq

)
+ an

u(x)2

N(x)
(x+ xq)

−bnu(x)

(
xq−1 +

1

xq−1

)
+ xq+1

]
= 3a2n

u(x)4

N(x)2
+ b2nu(x)2 Tr

(
1

xq+1

)
− 2anbn

u(x)3

N(x)
Tr

(
1

x

)
+ 2an

u(x)2

N(x)
Tr(x)

− bnu(x)

(
Tr(xq−1) + Tr

(
1

xq−1

))
+ u(x).

Applying Lemma 3.2(a), (b) and (c) to the last expression, we get

R(x) = 3a2n
u(x)4

N(x)2
+ b2nu(x)2

Tr(x)

N(x)
− 2anbn

u(x)3

N(x)
· u(x)

N(x)
+ 2an

u(x)2

N(x)
Tr(x)

− bnu(x)

(
u(x)

Tr(x)

N(x)
− 3

)
+ u(x).

= (3a2n − 2anbn)
u(x)4

N(x)2
+ (b2n + 2an − bn)

u(x)2

N(x)
Tr(x) + (3bn + 1)u(x),

and hence

R(x)

u(x)
= (3a2n − 2anbn)

u(x)3

N(x)2
+ (b2n + 2an − bn)

u(x)

N(x)
Tr(x) + 3bn + 1.
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We compute now L(x)/u(x):

L(x)

u(x)
=

(
cn
u(x)

N(x)
− dn

1

x

)(
an
u(x)2

N(x)
− bn

u(x)

x
+ x

)
= cnan

u(x)3

N(x)2
− (cnbn + dnan)

u(x)2

N(x)x
+ dnbn

u(x)

x2
+ cn

u(x)x

N(x)
− dn.

Because

3a2n − 2anbn = an(3an − 2bn) = an
4n + (−2)n − 2− 2(−2)n + 2

3
= ancn

and
3bn + 1 = (−2)n = −dn,

to prove R(x)/u(x) = L(x)/u(x) it is enough to show that

cn
u(x)x

N(x)
− (b2n + 2an − bn)

u(x)

N(x)
Tr(x)− (cnbn + dnan)

u(x)2

N(x)x
+ dnbn

u(x)

x2
= 0

Or equivalently, by multiplying with N(x)x2/u(x) 6= 0,

cnx
3 − (b2n + 2an − bn) Tr(x)x2 − (cnbn + dnan)u(x)x+ dnbn N(x) = 0. (6)

Using (2)–(4), we reduce (6) to

cnx
3 − cn Tr(x)x2 + cn Tr(xq+1)x− cn N(x) = 0,

for n ≥ 1, also cn ≥ 1 and we can further reduce to

x3 − Tr(x)x+ Tr(xq+1)x−N(x) = 0,

which is satisfied for any x ∈ Fq3 \ Fq by Lemma 3.1.

Remark 3.2. The iterate Fn(x) in (5) can be written in polynomial form

Fn(X) = an Trq3/q(X
q2+q−1) + (2an − bn) Trq3/q(X)− bnXq2+q−1 + (bn + 1)X,

using the following identities in Fq3 :

Trq3/q(x
q+1)2

Nq3/q(x)
= Trq3/q(x

q+1) Trq3/q

(
1

x

)
= Trq3/q

(
Trq3/q(x

q+1)

x

)

= Trq3/q

(
xq+1 + xq

2+q + xq
2+1

x

)
= Trq3/q(x

q) + Trq3/q(x
q2+q−1) + Trq3/q(x

q2)

= Trq3/q(x
q2+q−1) + 2 Trq3/q(x)

and

F (x) =
Trq3/q(x

q+1)

x
+ x = xq

2+q−1 + Trq3/q(x).
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Theorem 3.5. Let q = ps where p ≥ 5 and m = ordp(4). Then the permutation F on
Fq3 defined by F (x) = x+ (Trq3/q(x

q+1))/x satisfies the following properties:

(a) If ordp(−2) = ordp(4), then the cycle structure of F is

CS(F ) = 1q
2
m(q3−q2)/m.

(b) If ordp(−2) = 2 · ordp(4), then the cycle structure of F is

CS(F ) = 1q
2
m(q−1)/m(2m)(q

3−q2−q+1)/(2m).

The cycles of length m partition the set of nonzero elements of the subfield Fq, i. e.

CSFq(F ) = 11m(q−1)/m.

(c) The permutation F has order ordp(−2) in the symmetric group of permutations on
Fq3.

Proof. Clearly, (c) is a direct consequence of (a) and (b). Let y ∈ Fq3 and y /∈ Fix(F ),
i. e. u(y) 6= 0. Let t ≥ 2 be the minimal integer with F t(y) = y, i. e. t = `(F, y), the
length of the cycle containing y in the cycle decomposition of F . Recall the abbreviations
Tr = Trq3/q, N = Nq3/q, u(y) = Trq3/q(y

q+1). Then

F t(y)− y = at
u(y)2

N(y)
− bt

u(y)

y
= 0,

implying

at · u(y) = bt ·
N(y)

y
= bt · yq

2+q. (7)

Then necessarily it holds

Tr(at · u(y)) = Tr(bt · yq
2+q),

or equivalently

3 · at · u(y) = bt · u(y),

and hence
4t + (−2)t − 2

3
= 3 · at = bt =

(−2)t − 1

3
,

which is equivalent to 4t = 1. This shows that t must be divisible by ordp(4), and in
particular

t ≥ ordp(4). (8)
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Let r = ordp(−2). Then ar = br = 0 and, therefore

t ≤ ordp(−2). (9)

Hence if ordp(4) = ordp(−2), the statement in (a) follows from (8) and (9). Suppose
now r = 2 · ordp(4), then t ∈ {m, 2m} and we have to determine for which y, the integer
t = m. For t = m, the equation (7) reduces to

u(y) = 3 · yq2+q,

since in this case at = −2/9 and bt = −2/3. In particular, yq
2+q then belongs to the

subfield Fq, since u(y) does. This yields

yq
2+1 = (yq

2+q)q = yq
2+q,

which is equivalent to y ∈ Fq. This proves (b).

Theorem 3.6. Let q = ps, where p ≥ 5. The inverse map of

F (x) = x+
Trq3/q(x

q+1)

x
= xq

2+q−1 + Trq3/q(x)

on Fq3 is F k(x), where k = ordp(−2)− 1. More precisely, it holds

F−1(x) = −1

4
·

Trq3/q(x
q+1)2

Nq3/q(x)
+

1

2
·

Trq3/q(x
q+1)

x
+ x

= −1

4
· Trq3/q(x

q2+q−1) +
1

2
· xq2+q−1 +

1

2
x.

Proof. Theorem 3.5(c) yields F−1(x) = F k(x), where k = ordp(−2) − 1. It remains to
note that ak = −1/4 and bk = −1/2. The polynomial form is obtained using the identities
from Remark 3.2.

In [7] it is shown, that the inverse map of a permutation x+γ Trqn/q(x
k) has the form

x+γg(x), with g : Fqn → Fq. In general, an explicit description of g is a difficult problem.

The inverse of the permutation F16(x) = x+ Trq3/q(x
(q2+1)/2) can be determined using

Theorem 3.6 and he fact that F (x) = F16(x
q2+q−1):

Corollary 3.7. Let q = ps, where p ≥ 5. The inverse map of the permutation F16(x) =
x+ Trq3/q(x

(q2+1)/2)) on Fq3 is given by

F−1
16 (x) =

(
−1

4
· Trq3/q(x

q2+q−1) +
1

2
· xq2+q−1 +

1

2
x

)q2+q−1

.

The next theorem presents results on F (x) in the case p = 3.

Theorem 3.8. Let q = 3s, with s ≥ 1, and F be the permutation on Fq3 given by
F (x) = x+ (Trq3/q(x

q+1))/x. Then F has the following properties:

11



(a) The order of F is 3.

(b) The cycle structure of F is

CS(F ) = 1q
2
3(q

3−q2)/3.

(c) The inverse map of F is given by

F−1(x) = 2 ·
Trq3/q(x

q+1)2

Nq3/q(x)
−

Trq3/q(x
q+1)

x
+ x

= −Trq3/q(x
q2+q−1)− xq2+q−1 − x.

Proof. Recall the abbreviations Tr = Trq3/q, N = Nq3/q, u(y) = Trq3/q(y
q+1). Let idq3

be the identity function on Fq3 . Using formula (5) and computing a2 = 2, b2 = 1, a3 = 0,
b3 = 0, it is easy to see that F 2 6= idq3 , whereas F 3 = idq3 , proving (a). To verify (b),
note that by (a) the cycles of F have length at most 3. To show that there are no cycles
of length 2, we prove that if F 3(y) = y for y ∈ Fq3 , then y ∈ Fix(F ). Indeed, if

F 2(y) = 2 · u(y)2

N(y)
− u(y)

y
+ y = y,

it follows that
2 · u(y) = yq

2+q,

and then
0 = Tr(2 · u(y)) = Tr(xq

2+q) = u(y),

i. e. y ∈ Fix(F ). Theorem 3.3 completes the proof. The statement in (c) follows from
(a), which implies that F−1(x) = F 2(x).

Aknowledgments. We thank Lukas Kölsch for interesting discussions leading to Corol-
lary 2.3 and for pointing us to reference [16].
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