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General concepts in quantum mechanics
Starting point: Newton’s law for point mechanics:

yk:E. mx=F = trajectory x=Xx(t)

mi s -w ( \
iﬁﬁ — 3wV or 9] 1 p°+V =0

m._ . g dt| 2m )

P at’ . H Y,

equivalent to the conservation law

EH ) H= iﬁz + V =E=const. Hamiltonian
dt 2m

\ , potential
kin.energy



Alternative to Newton’s law for point mechanics:
The Hamilton-Jacobi equation

Sought is a canonical transformation
P=R.(P.X1)  Q,=Q,(P,X,1)

such that

~ . 0S
H(iP, {.1Q, {,t)=H(p,X,t)+ —=0 (1)
holds P Q) ot

This solves the mechanical problem completely and
the P, and Q, are integrals of the equation of motion

_oH =0 = P, =const. Qk=a—H=0 = Q, = const.

D =
“ oP,

k



The generating function S for the transformation (1)
is the action spectrum with dimension

[S]= energy - time e
or mass - velocity - distance | =

which has the vivid meaning of a
parcel postage rate depending on
weight&transport speed&distance

oS 0S
I D = — P _ —
If we insert (P), ox. =70,

into equ. (1) we get the Hamilton-Jacobi differential
equation for the action spectrum S

OS oS(x, ,P,,t
H(pk:aT’Xk’t)_l_ (k X ):

k

0




For a conservative system for which a potential exists
the Hamilton function reads

—*2

HEP § 1%k | t)_—erV(X)

and the Hamilton-Jacobi differential equation is given
by
Z(—) +V({x, })

The Hamilton-Jacobische differential equation is a partial differential

equation for the f+1 variables x, and t ( f= humber of degrees of
freedom). The P, are constants according to the definition of the action

spectrum.
The differential equation is nonlinear and there is no chance to find a
general solution (which depends on arbitary functions).



In quantum mechanics we start with the Schrodinger
equation, an equation of motion for the wave func-
tion v with a Hamiltonian formed by a translation

rule

Schrodinger equation for the wave function v

=2
iy =Hy H:S—m+v ﬁ—>?v VoV

Instead of sharp trajectories €(t), we have now
expectation values [y*Qwd3x formed with the wave
function  for finding Q2 with a certain probability.



Erwin Schrodinger
born 1887 in Vienna, Austria

. Excerpt of the Univ. calendar 1921
1921 1 year at Univ. Stuttgart!! “Erwin Schrodinger- dyn. Systems”

¢ ’ » " 7 M " . .
Wi sfor. o Ryslifoil Ppand ot Lpmihife: Lpamrfe

1926 Schrédinger equation

1933 Nobel prize

1936 emigration to Dublin
Ireland

1944 “What is life”

1956 Return to Vienna

1961 died in Vienna

Bust of
Erwin
Schrodinger
at the Univ.
of Vienna



//commons.wikimedia.org/wiki/File:Erwin_Schrodinger_at_U_Vienna.JPG
//commons.wikimedia.org/wiki/File:Erwin_Schrodinger_at_U_Vienna.JPG

Classical Limit of Quantum Mechanic: Quasi Classical Approximation.

For sufficient large momentum of a particle (small de-Broglie-wavelength) the beha-

vior does not differ from classical mechanics. The limiting process from guantum me-

chanics to classical mechanics is demonstrated easiest if a wavefunction in the form
Lsx.t)

v (X, t)=¢e"

Is inserted into the Schrddinger equation
2

iy = Hy = (—h—V2 +V)y
2m

%,_/
EEEkin
2m
leading for S(x,t) to
) :
S5V gy 1 as
ot 2m 2m
The comparison with the Hamilton-Jakobi differential equation of classical mechanics
2
~0S _ (VS) V)

ot 2m

with the classical action spectrum S shows similarity in the limit h—0.
(reminder: the trajectories of a classical particle are orthogonal to the plane S=const.)



Elementary application examples
Rectangular potential hole
Square well potential
o-potential
Potential hole with superimposed o-wall/hole



Rectangular Potential Hole

The Schrédinger equation for a single particle moving
in a one-dimensional rectangular potential hole with
normalized width {—Cz for|x| <1
(X) =
0 for|x|>1
reads
(0% + V() 0, () =£,0, (x)

\Y

-C2




Ground state
The ground state of the Schrodinger equation for a single

particle moving in a one-dimensional rectangular potential
hole is given by

SOZKS—CZ Py =

KK, =y/C* —K?

under continuity conditions at x=%1. Fitting the continuity
conditions at x=%1 for the derivative of ¢, gives

{Nocoskox x|<1

N, cosk, e ™™™ Ix|>1

Kotanky =i, Ky =4/C2 =K

or
k,=Ccosk,



K
ké <k, tank, < 0 gives

/2 -k,
as lower limit
ki <, or K, 2—%+\/%+C2 ~C*-C*

as upper limit

2
T

8|C]

Ko <m/2 or x, < \/C2 —(1/2)* ~|C|]-

Summary(C>0)
C’<k,<C K,




Exited states

symmetric eigenfunctions

cosk X X|<1
e, =k2 —C? (psvav{ ’ A k, =4C* -k v=123,..

cosk, e ™™™ |x|>1
asymmetric eigenfunctions

[ sink,x Ix|<1
e, =k?—C? ¢* =N, J+sink, e™FP x>1 ¢ = JC' -k: v=123,..
—sink, e ™M x<-1

Continuity of ¢ at x=1 gives
for the symmetric eigenfunctions

/CZ . k2 CZ . k2
tank, = : k, =arctan — v=123,..

v A%

and for the asymmetric eigenfunctions

k = —arctan K, v=123..

kV
NS ' C? -k

tank, =—



JC? —K? K,

and tank, =—

Evaluation of the relations tank, =
K, JC? —K?

The wave numbers k, in the energy eigenvalues € = k- C? obey the relations
for the symmetric eigenfunctions

CZ_kZ C2_k2 C2_k2

tank, = - k, =arctan " —= v+ Arctan - v=123,..
and for the asymmetric eigenfunctions
K C’-k? C*-k?
tank, =— = k, =—arccot = (v+ 17w+ Arctan v=123,..

JC - K2 ’ K, K,

with the transformation to the principal value. Both results can be summarized as
2 2

— or kV:Ccos(kV—vg) v=0,12,..v

K, N

including the groundstate wavenumber k,. Since k< ICl and Arctan ” < >

K, = vg + Arctan

v

vV o= S , |...] = largest integer from ...
max (7[/2)



For C 2 vn/2 the conditional equation

T
K,=v—+ Arccos —
2

C]
simplifies with
C:vg +0 , oxl

to
K =Ve48-vo582+—.=Covo52 + ..
2 4

which gives for the energy eigenvalues
a:kﬂ4?z—@gf§

For an infinitely deep potential hole ( C?2 — ) the conditional equation has the limit

C’-k> T
Arctan " —>§ and Kk, —>(v+1)E v=0,12,..

\%

which leads to the eigenvalues

gféﬁwn%gf—c2v=o¢zm
In accordance with the eigenvalues of the square well potential



The conditional equation
for the wavenumbers

can be transformed into
|C|cosk, v=0,4,8,..
C|sink, v=15,9,..
" |-|C|cosk, v=2,6,10,...
—|Clsink, v=37,11,..

3n/2

with

vV— <k <(v+1)—v<v { c }
2 2 (n/2)

Results for C2=25

ONCERNCN T
0

1.306 1.571

1 1.571 2.596 3.142
2 3.142 3.837 4.712
3 4.712 4937 6.283

19



Energy eigenvalues

A
8\/

€ :kZ_CZ E—

Results for C2=25

0 -23.29
1 -18.26
2 -10.27

20



Scattering states

After analyzing the bound states (ground state, excited states) we investigate
the scattering states (¢ = k2 > 0)

The Schrodinger equation
—C* for|x|<1
(02 V() 0, () = K 0, () v<x>={ *
0 for|x|>1

is solved in 3 regions: (1) x<-1,(2)-1<x<1,and (3) x> 1.

(1) x<-1:

o (X)=1e" +R e™
(2) -1<x < 1:

o (X) = Ae™ +Be ™ p=+C?+k?
(3) x>1:

P, (X) = LICh only outgoing wave



Since the potential is finite everywhere, both the wave function and its deri-
vative must be continuous everywhere.

At x = -1 these two conditions yield _ _
le™ +Re*“ =Ae™ +Be"
|k(| e—ik . R eik) _ iM(Ae—iM . B eiH)
at x = 1 we have _ _ _
Ae"+Be™ =Te"
in(Ae* —-Be™)=ikT e"

which can be summarized in matrixform

([ a—in in ik 3\
e et —e 0 |
4 —ik )
C A ) e
—ip in k ik A
e —e* —e” 0 K.
ol B —le
e e™ 0 —-e* ||R HO
| | k .
et _g o —Zek LT . 0
\ o




We have 4 linear equations for the unknowns R,T, A, and B, so we can

express these constants in terms of the amplitude | of the incident wave,
which is put to 1 (C#0) for simplicity.

Inserting yields

T - :
1+ (u?—k?)%sin22u / 4k2p2

R+ T =1

In the limit C2—« T, R, and I—0 , and there is no scattering solution. In this
limit and only the bound states exist



We can write this in original parameters and get

2 1

T = .
¢ sin?2+/C2+k2

1+
4k?(C2? + k?)

The transmission becomes 1 (i.e. no reflection) under the condition

27/C2+ k2 =nn n=012,..

This phenomenon occurs in the Ramsauer-Townsend effect*), which
Involves the scattering of electrons off atoms of inert gases. Classical
physics predicts that the number of electrons scattered should increase
monotonically with their energy, but in fact a minimum is observed for
certain electron energies. A model in which the inert gas atom is treated
as a finite square well provides a simplified explanation of the effect.

*) Reference: Griffiths, David J. (2005), Introduction to
Quantum Mechanics, 2nd Edition; Pearson Education



Factorization
The definition b, = o, + {ko fank,x forpd <1 JEE gives
o7 Kq for|x| > 1
by by, =
(-0, +k, tankyx OL— |x]) + k,O(|x| 1)) (&, +k, tank,x O(1 — |x]) + k,O(|x| - 1))

= 0% — (ko tank,x O - |x|) + KO®(|X| — 1))’ n (ko tank,x O(1 - |X|) + Ko®(|X| — 1))2
Ks

2

=02 —
cos“k,X

O - |x|) + (—k, tankyx + 14)8(|x| —1)sign x

I
=0

+ K2 tan? k,x ©(1— X)) + k2 (x|~ 1)
%/_/ | N ——

1 1-0(1-|x|)
cos?kox
= -0, —(kg+1xg)O(1—|x|) + kg with —kgtank,+1, =0
EVtSO

and allows the decomposition
H —802—5)2("‘\/—80 = bEObko € = —Ké V= —(k§+1<§)®(1—|x|)



Square-Well Potential

The Schrodinger equation for a single particle moving in a one-dimensional rectan-
gular potential hole shows in the limiting case C>— oo no scattering states solutions.
We can therefore the potential rescale by adding C?and get for a infinitely deep
square-well potential of width {

0 for|x|<(

V(x) = {
00 else

In dimensionless variables (x‘=x/t, V‘=V/(h?/2m{?), e=E/(h?/2m{?), ‘= /VL), ‘ sup-
pressed ) the associated Schrédinger equation reads

(0 VOO, 00 =500 Vo =1 =t
00 ‘X‘>l

1 as
N, sink:x

with the solutions
v, :{ x| <1 y, =0 else

S
N, cosk X

and g, = (kis’s)2
Fitting the boundary conditions gives 1
v,)=0=k =vr v=123...; Kl =(v+ E)TE v=0,12...

g, = (k™) = (v +1)2(g)2 v=012,..



Factorization gives — &% +V/(x)—¢g, = —0> — (g)2 = L'L =(-0, + gtangx)(éx + gtangx)

=8 +(2) tan® =X ——tan' = X = -2 — (=)°
2 2" 27 27 2

Generalization of the decomposition gives

A Y ' 2. 242 2
L. L, =(-0, +aytanoax)(0, +aytanax) = -0, —aytan’ax+a’y” tan EX =—0, +

with the generalized Hamiltonian

a’y(y =1
H(y) = -0 +V = -0, + Y(Z )
COS™ aX

-nt/2

29



Ladder operators

The commutation relation

a’y(y +1
Y(YZ ) —0L2y2
COS™ X

= (-0, +a(y +1)tan ax)(0, +a(y +1)tanax) = —0> —a(y +1)tan’ ax + o’ (y +1)° tan® ax

+ A2 ' 2 2 2 A2
b.by = (0, +aytanax)(-0, +aytanax) = -0, +aytan’ax+a’y" tan” ax = -0, +
b’ .b

v+l y+1

2
= -0, +%—a2(y+1)2 =b, bl —a’(2y+1)

introduced into the Schrédinger equation with the generalized potential
gives fory — y+1
(Hiy +) -’ (v +D)*)y, (v +) = (e, (y +) =’ (y + )"y, (v +2)
by bl.b,, v, (y+D)=(e, (v +1) -’ (v +1)* )by, (v +1)

’ 2.2 2
byb;—a2§21+1) -0y —a” (2y+1)

(H) —a*y)byw, (v+D) = (e, (y +1) —a’y*)o)y, (v +1)

comparison with (H(y) —a*y*)w,,,(v) = (6,.. (v) =" )y, (¥)

b,

gives g (vy+) =g ,(y) and v ,(y)~byw,(v+1)



starting with the ground state

by\Vo (v)=0 resp. g, (y)= o’y
gives g, (v) =g, (y+1) =a’(y+1)°

e, () =¢&(y+) =0a’(y+2)°

e, (v)=a’(y+v)’

or for y=1
e, (1) =a’(v+1)°

and the ladder operator representation reads

v, (y) ~ b’ Vo (y+1)
v, (7) ~ v, (v +1) ~byby v (y +2)

v, (7) ~ b;b;ﬂ - y+v LSVWe(y+Vv)



Excursus: Schrodinger equation for the
hyperbolic Péschl-Teller potential
The Schrodinger equation for a particle in the hyperbolic
Poschl-Teller potential reads (first for the scattering states)

e=k’>0 (—0% —

/
—2\2

MO

cosh? X

\
—A

2
—0, +

\ (L th ):;2 Y

.

_|_

cosh®x ~ cosh” x

~(nthx) )

\

QF Q

(-0, +Athx) (8, +Athx)—A°

J

w=k’y A>0

32



Excursus: Schrodinger equation for the
hyperbolic Péschl-Teller potential
For the scattering states (¢ > 0) only the asymptotic behavior iIs
considered. [x|—o gives thx — signx
Q"'Q — (-0, +Asignx)(0, +Asignx)
= —0% — A (signx)+A? = =32 —2A3 (x) +A?
and the Schrodinger equation has the asymptotic form

(—0% — 243 (x) )y =K’y
with the solution

a :j_sin(kx—ak)
W=+ 71t tano, =k /A
® = —gsinkx
RN .




Excursus: Schrodinger equation for the
hyperbolic Péschl-Teller potential
The general solution is a linear combination

y=cy +dy”
We want a solution with the asymptotic form

eikx_I_Re—ikx X<O
\|]:

Teikx X > O
l.e.
e o C ei(—kx—ak) _e—i(—kx—ak) d eikx _e_ikx
e +Re ™ = _ + |
Jn 21 2
. C ei(kx—ak) . e_i(kX—(lk) d e|kX . e—ikx
Telkx _ N

Jr 2i Jo 2i

34



Excursus: Schrodinger equation for the
hyperbolic Péschl-Teller potential
Comparison of the coefficients of e and e results in

1= gl 4 d R=— g _ d
2iim 2ivn 2in AN
0= oy d T= C e it 4 d

—C
ova 2ive e 2iva
T and R can be computed from these equations to
R = e "““cosa, T =ie *sina,
satisfying the conservation law
T +R[ =1

35



Excursus: Schrodinger equation for the

hyperbolic POoschl-Teller potential
For the bound states (¢, < 0) the Schrodinger equation for the
hyperbolic Poschl-Teller potential is given by

MO
HOW, = (03— (fshz Dy, =z, 220

1 A
(_@i +7\‘2(1_ 2 )_ 2 _}\‘Z)Wn &V,
cosh“x” cosh” X
(Kt;lrx)2 (k;};x)’

(-0, +Athx) (8, + A thx) = ")y, =,V

Q+Y(X) Qﬁ)

The decomposition into 2 hermitian conjugate factors was done
with regard to a ground state for which a norm is possible and
enables the estimation A+e, 20 .



Excursus: Schrodinger equation for the
hyperbolic Pdschl-Teller potential
From the estimation follows for the ground state which can

be normalized

A2

or Qy,=0->y,=Ncosh™x A>0
Changing A— A-1 In the Schrodinger equation gives
HO-D)y (A1) =5 (A=Dy, (A-1)
Multiplying with o* (1) from left gives
Q" (MQ A -DN-) - A -1 )y, (A=) =&, (L -DQ M)y, (A1)

Inserting the commutation relation
Q" (A-DQ(A-1)-Q1)Q" (L)
= (-0, + (A -1 thx)(0, + (A -1 thx) — (0, + A thx)(-0, + A thx)
=21 +1

Q' (2)-

37



Excursus: Schrodinger equation for the
hyperbolic Poschl-Teller potential
Q" ()(Q (=D -1 - (L ~D*)y, (A =1) = &, (.= D M)y, (2~ 1)

Q)QF (L)=21+1

(Q" (M) -1 ) My, (L -1 =&, (L -DQ" M)y, (A —1)

. /

H(2)

gives HA)Q Wy, (A1) =g, (b —DQ" M)y, (A -1)
Comparison with

H (k)Wnﬂ (}\‘) — 8n+1 (K)Wnﬂ (7\‘)
yields to

8n (7\“ o 1) — 8n+1(7\') \Vn+1(7\“) - Q+ (k)wn (7\“ o 1)

38



Excursus: Schrodinger equation for the
hyperbolic PGschl-Teller potential
Starting with the ground state gives
£, = —\°
g, =—(A-1)

for

g, =—(A—n)* n=0,1,2,..,n,, =[A]

unambiguousness

and allows the ladder representation

Wy () = QF (L), (L 1)
W, (1) ~ QW (h=1) ~ Q* ()Q" (L =Ly, (1.~ 2)

v, () ~ Q' WO (A-1)...0" (L —n +1)y,o(h—n)

n factors

39



Comparison of energy eigenvalues and potential shape
for the potential well and the Pdoschl-Teller potential

(example shown for C2=A(A+1) =25 0or A= —%+ E+ C2=4.525)

\Y
A%
1 0 1 5 X
_0.921 B -~ 5276

\ / 2,326
\ / -6.376
-10.27

-12.426
-18.26

-20.475
-23.29

—(%=-25 —(%=-25




Synopsis of potential well and Pdschl-Teller potential

V

—(%=-25

41



Potential well Poschl-Teller potential
Factorization
A(H])
H=b b, -2 V=-C* ®l-|x H=Q'Q-\" V=-
o Do 10 o (=) cosh? x
by, =0, + Ko tankyX O |x|) + 1, O(x|-1| 2T FAtX A>0
Area under potential hump
A+

+00 +1
A= [ (-V())dx = [ C*dx =2C?
—00 -1

A= T(—V(x)) dx = j i~ 1)2 dx =20\ +1

h2

Ground state

bko 0, =0=
¢, =Ncosk,x O(L—|x])

+Ncosk, e V¢ He(x|-1)

g, = ki =—(C* —kZ) =-C?sin’k,

Qe,=0=
B N
%0 = cosh* x



k, tank, :«/CZ —k; or cosk, =

Potential well Poschl-Teller potential
Conditional equation for ground state eigenvalue
g,=k; —C’

Bound states eigenvalues

K, = Vg + Arctan

x/ K

or —V=cos(k -V )

_ : m cl |
e, =k?> —C? = —C?sin’(k, _VE) v :0,1,..,{(71/2)_ g, =—(A—v)* v=0,1,2,...,[A]
Scattering states eigenfunctions and eigenvalues
\V:{ IkX +Re kx X< -1 eikX +COSOLk e—ikx—iak X<Ot
ikx V= L ano, ——
Te X >+1 ISIn(Xk eIkX—Iak x>0 k
TP =1-Rf' = i E
C*sin®2/C*+k”

4K2(C? +K?)




O-potential

The Schrddinger equation for a particle in a d-potential reads

Ho=(-0; —2B3(x)9p=¢ ¢ B>0
V 3
0% X
_BZ

with natural boundary condition(¢ (X = +0) = 0)we get
ground state @, =+/Be ™ gy =P’

: 1 . 1 .
scattering states ¢, =—=sin(k|x|-o,)  ¢f =—=sinkx g, =k°

Jr Jr

tana, =k/B k>0



Factorization

Decomposition
b=0, +Bsignx b" =-0, +psignx

b*b=-02 — (Bsignx)'+(Bsign x)°
= 0% — 2B3(X) + B

H

gives
H=b"b-p°
From this it follows
g > —p°

and for the ground state

gy =—P" bo,=0= @, = Ne ™"



Schrodinger equation for infinite square well
with superimposed 6-wall/hole in the middle

The Schrddinger equation for a infinite square well with a 6-potential in the middle

reads , | |
2 B +2Bo(x)  for(x|< X
Ho=(-0, +V.)po=¢0 V, = c
o0 for|x| = x,
V A V A
R>0 ‘ R<0
opaque wall B B
(infinitesimal thin)
X, " x e X, " x
& — Potential hole
V, =B +2B5() V, =B - 2JB|5(x)
—.+B*>  v=0 Bx. <-1
8V :k3+BZ V:Ollizl"' 8\’ = (; 2
k2+p> v=0,123.. Px,>-1



Eigenfunctions and Eigenvalues

The eigenfunctions, which automatically fulfill the infinite wall boundary conditions, are

ground state o N, sinkg (]x|-x,) . k2 +p? Bx, >—1
’ N, sinh (|x|-x,) " — 15 +P° Bx. <—1
excited states @, =N, sink® (|x|-x,) & =B +k5’ v=123,...
o3 =N, sink¥x e, =B’ +k? k¥ =" v=123.
X

c

The remaining boundary condition is the jump condition —¢'(0+)+¢'(0-) +2B¢(0) =0
which has with @ *°(0+) =£¢'*”(0-) the simple form ¢'(0+) —B®(0) =0 and acts only on

the symmetric states

kS
tan kgx, = ——= Bx, >-1
ground state
S
tanh kX, = -5 Bx, <—1
S
excited states tan kK)x, =—— v=123,..

S 1 S
using the principal value KXo =(v+ E)ﬂ +arctan (B/kv)



Eigenfunction expansion in the limiting case Xx,—°° , B <0

The limiting case x.—©°° , B < 0 gives for the ground state
- No o eolix) _ gy o Bl 2 o2
q)o:NosmhKo(\x\—xC)—>7e o) = N, e g, =Ky +p° —>0

and for the symmetric scattering states

¢, =N, sink (|x|—x,) K°X. :(v+%)7c+arctan B/K)—>vrn v=1,23,..

¢, —N, cosk® x K> = e, =Tk’ v=135..
X

c

as well as for the antisymmetric scattering states

as __ : as
¢, =N, sink x i =;’—” e, =p2+k™  v=246,..
X

c



Wave numbers ks, of the symmetric eigen-
functions ¢, fulfilling the boundary conditions

=== v=0 (part 1)

=== v=0 (part 2)
v=1

=2




eigenvalues of the Schrédinger equation

= v=0 (part 1)

=== v=0 (part 2)
v=1

——V=2




Factorization of the Schrodinger equation with the infinite
square well potential and a superimposed 6-wall/hole in the
middle

-

o, (£x,)=0

H=-0:+B°+2Bd(x) for|x|<x, with :
A (@B, (09,0 =0

Bx. > -1 gives
g, =Ko +B° H-g,=-0; —k; +2B3(x)=b, b,
b, =0, —k, cotk, (x| —x.)sign x
similar expansion of blo bko gives

by, b, =-02 +(k, cotk, (x| —x,) sign x)' + (ko cot Ky (x| —x,) sign x)2



The expansion of by b, finally gives
by by, =05 + k5 (~1—cot? K, (x| - x,))
+ 2k, cot K, (|| — . )8(x) + kg cot® Kk, (|| — X )

=02 —k; — 2k, cotk,x_ &(x)

comparison with the original gives the conditional
equation for the wave number k,

cotk,X, = _kﬁ resp. tank x, = —ﬁ

0



Bx.< -1 gives
g, =K. +PB° H—g, =—-02 +x; +2BS(X) = b, b
b, =0, — 1, cothi, (x| —x,)sign x

Expansion of b, b, gives

by b, =-0% +(x, cothk, (x| — X, )sign x)’ + (1, coth ic, (X — X, )sign x )’
=07 + 1 (1-coth? i, (x| - X))
+ 2k, coth icy (|X| — X, )8(X) + k5 coth® i, (|| — X )
=—0- +x. — 2K, coth kX _ 5(X)
this is in accordance with the original for

p

cothk X, = ——
Ko

which again is the condition for the wave number Kk, to
fulfill the boundary conditions



Summary of the Factorization procedure
for the Schrodinger equation

The factorization procedure of the elementary Schrddinger
equation application examples can be summarized as follows

We start with the decomposition
H-g,)p, = (-0 +V,—¢,) @, = (Q+Q—(eV —80))(pV =0 Q=0,+W

The selfadjoint form gives the inequality

e, >¢g, Wwith Qop, =0 = W=—20 o ~WHW? =V, —¢,
Po

where @, IS the ground state and g, Is the corresponding
ground state energy.

The results of the factorization for the elementary examples
are put together in the adjacent table.



elementary |ground factorization eigenvalues

example state bound states
square well _{Nocosk;x x|<1] H=b"b g, =1+ V)2 (L)’
potential "o else 2

b=0, + Ztan—x
2 2

{O x| <1
\V =
+o0 else

rectangular )
potential 0, = N, {COS X H=by by, + & e, =kZ -C?

hole o {\/cz—ks Xl =

ko tank,x [x|<1

y_ {—Cz X <1 k,tank, =,/C? — K2 + Arctan

0 [x[>1




elementary ground factorization eigenvalues
example state bound states
- ' gx |H=b"b+
o-potential o, = Ne B s(? g, =—
b=0, +psignXx
V =-2B58(x)
square well Bx, >—1
: N i S _ — §+ 2 X, >-1
Wit e e b s, (e
wall/hole : :
BXC <-1 bko :ax— 8V2k3+B2
0, =N,sinh «, (‘x‘ —X.) _ 1
" B% +2B5(x) [x| <1 ko, cotk, (x| —1) sign x|k = (v+)m
R x| >1 B
+Arctank— v=12,..




V(r)

80

2 2
V(1) __& mUl+D

= 2
60) = r 2mr

40

20

I

0 5 10 15 -5 0 50
3D harm. oscillator Coulomb potential
v {x) 2 eV{ r—r, r—r,
| —20—2 —a—2
V(r)z—zD(ﬂ—la—zj v | V()=D(e " -2 ©)
r 2r
!
V}r) |
| N 198, T T o °r
| il )
: £
\/ of
Dp-——= l "
Kratzer potential Morse potential

58



Summary of further exactly solvable potentials (1)

name formula factorization eigenvalues
1.
3D harm. | V() =7 H(O =b* (OB + £+ an(€)=2n+€+g
oscillator
D py =g, ¢ L £
r -2 r
b (OB —
Coulomb V(r):_g+g(g+1) H(?) = b™ (0)b(0) G e (0= 1 2
potential rr | (n+(+1)
(+1 1
=0 =+
Kratzer H(>M)=b+(x)1:,(x)—ﬁ . Y
. 2 L) =- ;
potential |v(x) =2t 4 24— — (v+1)
X X" by =8, —=+1
X A
1
Morse voo—e® _gre () = b (b - (v = 7| &, ==(r=5 =)’
potentia X)=e"" —2vye

D) =0, — ¢ 47>




2 1 OaX—T 2
30+ T T T T
T‘//;zo— )
V(X) = I J
( ) % y=2 v B —VO
Vo w1  v(y-1) | |w=2s ) (0= cosh?(ax)
2 {sin®(ax) cos?(ax) ) ° . 2
trigon. Pdschl Teller potential hyperbolic (modified) Pdschl Teller potential
Coulomb % ; Hulthén -
; 3 2 1 — :14 2 n=5 £ V&)
i/
n=2 & 2 —
_/ ‘ V(x) =—-2Bcoth ocx+A_‘ zaA
\ / sinh” ax
—-rla Xiin
e \ 2B
V(rN=-V,—— . |
( ) 0 1_e—r/a !
Hulthén potential Eckart potential
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Summary of further exactly solvable potentials (I1)

name formula factorization eigenvalues
trlg V(X) _ H(M 1) H(w,v) = B:,YBM,Y g, (u,y) = (LH—’Y+2V)2
. sin’ x +(n+7)’
Poschl-Teller v-D)  |B,, =5, -ucotx
potential cos’ X +ytan X
qyperb. Vg - M0 HO) =0 ()OO e =—G-1-ny
Poschl-Teller cosh? x ~(A=1)
potential O()=06,+(A—1)thx
Hulthén 1 H=b+b—(622_1 _ B’ _n+1)2
: V(X) = —p° "T2(n+D) 2
notential (X)=—=B" _r (n+1)
b=0, ——coth—+—
22 2
. 2 2
potential LAR-D) K _(AB -
- — _ = +Nn
sinh?x |2 =0, —Acoth x+A




6000

3000

2000

1000

V(x)=
24 N2 _
—A2+B A2 aA+B(2A—a)tanaX
COS” aX _ COS X
Scarf | potential
30 I\\ )
20 4 \\ i'
o\ |
o By ,’
_ e
V(x)= S BT S
2
—A? + 82 + A(A; 1) + 2Bcot ax
A sIn“ X

trig. Rosen-Morse potential

N\
o 07| \\».-i o
N |
\ sl
o]
V(X): 8 6 4 =2 0 2 4 B8 8 10
2 2
A2+B —Az—ocA+B(2A+a)tanhocX
cosh” ax cosh ox
Scarf Il potential
301
25
204
151
10
"
"
5

V(X)= 10 4 2 0 2 4
2
+ B _ AlA+L) + 2Btanh ax

A2
A?  cosh?ax

hyperbolic Rosen-Morse potential




Summary of further exactly solvable potentials (I11)

name formula factorization eigenvalues
trig. Scarf |, __,: BA A | Hia)=b;p, £, (A)=(A+)? - A
. COS™ X
potential spa_n X |by=0.+ Atanx + 2
COS X COS X
hyp. Scart |, B —A:Z—A H(A) = B, £, (A) =—(A—V)*+A®
I cosn~X
pOtentIaI tanhX BAZGX + Atanhx +
+ B(2A+1) cosh x
cosh x
trig. Rosen- V:—A2+B—z H(A)=b"b, & (A) = (A +v)? - A?
A
|\/|OI‘S€- A? — bA:GX—Acotx—E —BZ( 1 ~— 12j
potential t ity T oBootx A (A+v)? A
hyp. Rosen- | _a:, B H=b,b, £, (A)=A” — (A-v)’
A’ -
Morse A b, =0, + Atanhx + = +Bz[1 __1 j
potentlal — o~ + 2Btanh x A A? (A_\;)2




Generalization for the group of all shape invariant potentials
Generally all Schrodinger equations with shape invariant
potentials can be solved algebraically and are characterized by
the property

V_ (x,a,) =V, (X,a,)+06
where a, and a, are 2 parameters, ® Is a constant eventually de-
pending on a, and/or a,, and V, are amenable to the Ricatti

equation V. (x.a) = W(x,a) + @Wa(X,a)
. X

The Hamiltonian of the considered Schrodinger equation reads
H@)=-0: +V_(x,a)

= (-0, + W(x,a))(0, + W(x,a))=B"(a)B(a)




The substitution a, — a, in the original Hamiltonian gives

H(a,) = 02 +V_(x,a,)=B"(a,)B(a,)
oW(x,a,)

OX
Inserting the property of shape invariant potentials yields

oW(x,a,) s

=02 +W?(x,a,) -

H(@,) = ~0% + W?(x,a,) +

=B(a,)B"(a,)+©
Multiplying the starting Schrodinger equation H(a,)y=¢,(a,)v
from left with B*(a,) gives
B"(a,)H(@,)v, (a,)
- B"(3,)B"(8,)B(a,) v, (a,) = B"(a, g, (a,)v, (a,)

B(a,;)B" (a;)+0©




Thus inserting of the property of the shape invariant potentials
yields

B* (a)H(@,)v, (a,)
- ( B"(a,)B(a,) + ®) ?Jr (a)wv,(a, 2 — &, (az)?+ (al)yv (322
~y.(ap) ~Wyp (a1)
which can be summarized as
£,..(a)+0=¢,(a,) V.. (a) ~B'(a)y,(a,)
allowing the inaugurated ladder array in case of discrete eigen-
states




Relations among shape invariant potentials
* algebraic approach
* mapping by canonical transformation
* Lie algebraic methods



Factorization of the Schroédinger equation as central module
for exact solutions, supersymmetry, shape invariance,
group theory, and coherent states in quantum mechanics

shape invariance

supersymmetry

factorization

exact solution

group theory

coherent states

89



The relation to generate the energy eigenvalues of the Schrodinger equation for
supersymmetric, shape invariant potentials can be summarized as a Lie algebra
approach

The Lie algebra uses a calculus, which starts with the commutation relation
i,j,kel,2,3

+1fori, j,k even permutation of 1,2,3
—1fori, J,k odd permutation of 1,2,3
| 0 forany2ofi, jorkareequal

[L. L.] =gy L, & =Levi—symbol =<

1! J

A Lie algebra is a vector space g over a field K together with an inner operation
[,-]: gxg — g, (X,y)=[x,y] . The inner operation is called Lie-bracket and is subject
to the following conditions:

*The inner operation is bilinear, that means it is linear in both arguments.
[ax+by,z]=a[x,z]+b[y,z] and [z,ax+by]=a[z,x]+b[z,y] valid for all a,beK and all
X,Y,ZEQ.

*The inner operation fulfills the Jacobi identity. The Jacobi identity reads:
X1y, 211+ [y.[z,X]]*+[z,[x,y]]=0 valid for all x,y,z€qg.

*[x,x]=0 is valid for all xeg.



The Schrddinger equation with the hyperbolic Scarf potential (genalized
Hutheén potential) as an example for algebraic approach defining creation
and annihilation operators®)
B°-A°-A tanh x

+B(2A+1 H(A)=b'b, b,=6. +Atanhx+
cosh?x ( )coshx (A)=baba - Pa=0, cosh x

H(A)Wnﬂ (A) — 8n+1(‘A‘)\|jn+1(A) 8n (A + 1) — 8n+1(‘A) ‘C’n — A2 o (A _n)Z
\Vn+1 (A) - BZ\Vn (A_l) — E);e_aA\Vn (A) = I:+ \Vn (A) resp' I:— — eaA E)A — lE’)AJrl eaA

V=A%+

The definition of L_and L, leads to the commutation relation

A A A ~ ~

[I: ,IZJ =L L -LL =e*b,bie? —bie™e™b, =b, bi, —bib,

whereas b,,.b%,, =bib, + (2A+1) gives [I:_, IA_J =2A+1=2L,

*) Balantekin, A. B., Algebraic approach to shape invariance, Phys. Rev. A57 (1998) pp.4981



The further commutation relations read

Lo L] =Gl - LL, = (A+%)6;e% e (A+%)

A

=(A+ %)5268*‘ —b (A - %) e’ =(A+ %)B;e% —(A- %)BZGaA =bte?r =L,

(Lo L =Bl —L L= (A+ )b, 6™, (A+)

N

. (A+%)eaA6A et (A+%)5A :(A+%)65A6A —(A+g)e8A5A —_ b, =

and can be summarized as the Lie brackets

L0 =20, . [L.L]-C, . 0,0 ]=-L
which are connected to the ladder operators

) 5 ) 1

Loy, ()=, (Y) Loy, (Y) = (v, (Y) Lo =A~+2



Application Examples

A Disaster description

« Brownian motion and Schrodinger equation

» Stochastic description of waterlevel undulations
* First passage time distribution

B Traffic breakdown propagation

« Korteweg-de Vries equation, Lax pairs and Schrodinger
eguation

» Conservation law In traffic modeling

« Korteweg-de Vries equation for wide moving jams



Brownian motion and Schrodinger equation

Langevin equation as starting point

mx=—-yx + F + T

friction systematic  fluctuating
force force

with 6 — correlated fluctuations
<I>=0 <I'(I'{t")>=2Dos(t-1t")
and
F=-0 ® (force derived from potential)
summary
(MX) + yX= -0, O+ T
X =—0,®+1 (Langevin equation)



Paul Langevin
* January 23.1872
T December 19.1946

- french physicist

- studied at the Ecole Supériere de Physique
et de Chimie Industrielles de la Ville de Paris

- career at this school, director at last

- since 1909 professor for physics at the
College de France

- student of Pierre (11906) and
Marie Curie (11934). He was a friend
of the family and he had 1910 an
affaire with Marie Curie.

- in the 30's and 40" s years he belonged to a
bohemian in Paris with Picasso.
Paul Langevin painted by
- applied firstly in 1916 the Piezo electricity of Pablo Picasso, 1938
quartZ CryStaIS by ConStrUCting the ﬁrSt UItrasoniC source: http:// amp2005.blog.lemonde.fr/files/langevin
object detector (Sonar) by_picasso.jpg und www.wikipedia.org/wiki/Paul_Langevin



crit

Trajectories of the system status with common start at x=0

T= point in time, when firstly hitting a certain critical value x_;



Langevin equation X = —-® + T

drift diffusion

stochastic equivalent ‘ ‘

equation of motion : B , 5
for prob. distribution P(x.t) = 0,2°P(x,t) + DI P(x.1)

function P(x,t)

Potential D w
of the |
l

systematic
force

97




Special cases to interprete the Fokker-Planck equation

P(x.t) = (0,0’ + D&% )P(x.t)

a) Pure drift (D=0) P(x,t) —0,®'P(x,t)=0

Solution by method of characteristics
P(x,t) = P(x(D))
X=—@'

= sharp movement along the trajectory x=x(t)

b) Pure diffusion (®°=0) P(x,t) =D&2P(x,t)

_(X—Xo)2
e 4Dt

P(Xx,t) =

1
\ 2nDt

= dissolving Gaussian distribution



General Solution for P(x,t) by Separation
Starting equation (Fokker-Planck equation)
P(X.t) =(0,2'(x) + 8% )P(x.t)
0,=0 gives stationary solution
0=0,(®'(X)+0,)P"(x) = P¥(x)=Ne ¥
separation ansatz for complete solution

P(x.) =P (x) g(x)e™ =€ 2" p(x)e ™

gives
() ’ , _Eq)
_K(P:ez (5)((1) _|_@X)e 2 o
or
1, 1,
}\‘(P:(_ax +—-OD )(ax +=D)o
2 2
1 1

— _@2 + _(D'Z ]



The equation of motion for the probability distribution of
the Brownian motion (Fokker-Planck equation) thus has
the form of a Schrodinger-equation

Hpo=%o ; H=(-0:+V,)

with the Schrodinger-potential

VS:l(DIZ_l(D”EWZ_WI WEE(D’
4 2 2

and the correspondence
energyeigenvalue E < time constantA

particledensity y*y < probability density P
wave function v < eigenfunction @=P/+/P*



A short ethymology

e dis — aster ( latin origin ):
non/wrong constellation ( dis ) of stars ( aster )-
our ancestors believed in the influence of stars on
natural disasters ( floods, earthquakes,...)

e catastrophe ( greek origin: kataotpopn ):
revolution of planets around a central star, again-
the influence of stars on our live



Danube water level time series

800 N — e — —r———r————r—r :
600

3, 400

200

10950

=]

(a) t [day]
300

[ 20 000 data of daily water level of the river Danube,
275 | measured at Nagymaros, Hungary
250 |

225 |

H(t) [cm]

200 | average seasonal undulations during the year

175

150 Lo
0 100 200 300 400
(b) t [day]

Source: 1vi. Janosiy; Gallas; J.A.C.: Growth of companies and water-level fluctuations of the river Danube



Stochastic description of water level undulations

h, = daily water level of a specific day for year t

simple approach with constant flow rate y and fluctuations

—2vh, . h, >h
hea= hy+ { e t + T(t)

+2vh,y ht<ﬁ
no _ _
change in / out flow fluctuations
hu(_ht: —2yht N r

1 +2vh,

%,_/
; ~2vh
h(t) {+2$hg8

Langevin—( _nh(ty/Ry)  X=—2vsignx + T (FOT))=2D5-1)
equation

=——d'(x) +1

drift diffusion

Fokker-Planck equation ®’ =2ysign X

for probability P(x,t) P=0o,®'P + 2P O =2yx|



pst—Q gives

from this follows

Stationary solution

(@' +0,)P(X) =0

P09 = ve "™

4
) :27|X|

transformation to

original variable

Pt (h) = P*(x)

x=In=
h

InP¥(X) = —ZV‘X‘ +Iny

A
In P (x)

v

( D —2y-1
i @ h>h

hdh (%) 2y—l h < H

=<
~




Danube water level

10{} | i L | 1
®*h=50cm |
0 h=100cm |
] 4 h=370cm |
107" - i
o :
EhD
L T e S . -
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
h
In= -
h

probability density distribution as a function of the logarithmic rate of change. The data
approximately collapse upon the universal (thin solid line).

Source: 1.M. Janosia; Gallas; J.A.C.: Growth of companies and water-level fluctuations of the river Danube
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Water Balance in VVojvodina Region
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From TISZA

Transit water 5.219 m3/s

Own water 52 m3/s
Transit water are 100 times
larger than the own ones.
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Eigenfunction expansion for the V-shaped potential
with natural boundaries

¢(x)

Separation P=e 2 o(x)e*' with O(X) = 2y|X|

transforms the Fokker Planck equation
P(X,t) = (3,0'(X) +;)P(x, 1)
into a Schrodinger equation

D D'
Ap = (-0, +7)(8x +7)<P =(—02+7* = 2y5(X))¢

with natural boundary condition (p(X — +0) =0)
ground state Ao =0 P, = We‘y|x|
symmetric/ antisymmetric scattering states

1 .
(pf’(:ﬁsm(k\x\—ock) tano, =k/y (pf:isinkx A =72 +k* k>0

Jr



Term scheme

>
<
<

scattering states

TELELETIEEREREETENRRNINY
JAA1ERTAEEATARIANRARARNNS

V, = y2— 2y8(X)

round state

(Matthew 22:14 — For many are called, but few are chosen)



2,5

15

05

Construction of the
time dependent (conditional) probability distribution
using the completeness relation

d(x—X%,) fort=0

~Lo+Lacxe)
P(x,t |x0,0)=e 2" 2 ji(pk(x)(pk(xo)e‘xkt —>
~2y[x for t>

/\
o,

1 1 1 1 1 1 1 1 1 1 1 1 Ir\l'-\I"'lr\I'\H\_IE—ILI 1 1 1 1 LI B I | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
123 456 7 8 9 1011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

—o— Reihel
—B— Reihe2
Reihe3
Reihe4
—x*— Reihe5

—8— Reiheb







First passage time

absorbing boundary
B L

B e X )
reflecting boundary

Probability and temporal drop of finding x anywhere below X

W(t)= j P(x,t|0,0) dx _aw@ _

X X

~ | Pt 0,0 dx=p(t)
[ -l

first passage time

D,

A

j(%it:£]0,0)

>

Probability of flow over X

X

-L
a reflecting

p(t) == _[ P (X1t|0a0) dx = j(Xcrip t | O;O) boundary

Xerit X

absorbing
boundary




Eigenfunction expansion

Using the completness relation

Yo, 00,0 =509

allows the decompostion
—1®(x)+1c1> 0

P(x 1[0.0)=e 2" 2 S ¢, (X) oy (0)e "
with
P(x t]0,0)] = 8(x)

transforms the Fokker Planck equation into an eigenvalue equation

(05 + 30200~ ()0, () =10, (9

which has to be solved under the boundary conditions

q)!
I:(ax + 2(x) )o, (¥ =0} reflecting boundary
X=-L
¢, (¥ |=0 absorbing boundary

X= Xcrit



: ( inh i, (X.i — X
{— oo gives N> _Ko( crit =) 0<X <X,
Sinh K Xt
bound state Py (X) =4 A=V’ —K5 , Ko>0
N g*o* x<0
jump condition — @y () + ¢ (—€) =27 ¢y (0)
_Ko _ 70X only solutions for vy x;; > 1
Y 2
. i > 1 1(02
and normalization gives N-=Z= ———
Y 1_2'Yxcrite et
2 sina .
— ———sink(X.; — X 0<X <X,
\/: sin kxcrit ( crit ) crit
. 2 2
scattering states P (X) =1 M=y +k® , k>0

\/zsin (kX + o) x <0
T

with jump conditionat x =0 cot kx i +cot oc:2%



First passage time probability distribution

p(t)=

-2 Ko Xerit

2 — L — . o0 .
2K0 e Y Xerit =Ko Xerit e_('YZ —Koz)t . O yxcrit < ]/2 n e_’YXcrit I dk k Slnza e—(Yerkz)t
1-2yX,; € 1 yXi >1/2 12 SINKX gy

s
il
)

fi

10+

TIMAES

s
////

0,2 5
0,01 4

LO
o G & =
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Korteweg-de Vries equation and Schrédinger equation

For the description of
(1) shallow water waves
(2) tidal bores, Tsunamis (Amazon tidal bore.avi)

(3) wide moving jams
the Korteweg-de Vries equation is perfect suitable as
equation of motion with competing nonlinear and disper-

sion terms ut n 6UUX . uXXX -0


Amazon_tidal_bore.avi

Korteweg-de Vries equation and Schrodinger equation (cont’d)

Introducing the linear operator L

L=-02+u

where u is the solution of the Korteweg de-Vries equation. The

spectral problem of the linear operator is represented by a
Schrodinger-like equation

Ly=-vy, +uy=Ey

The eigenfunctions y[x,E,t] and the eigenvalues E of L depend
on t as a parameter and when t is fixed this equation is the well
known time-independent linear Schrodinger equation of quan-
tum mechanics for a particle in the potential u(x,t)



Korteweg-de Vries equation and Schrodinger equation (cont’d)

Note that if u(x,t) evolves according to the Korteweg de-Vries
equation
u+ouu, —u, =0

XXX

and, if we chose
A=4i0; -3i(uo +o,u) =4io’ —3i(2uo, +u,)

the linear operator L satisfies the operator equation
@L

8’[
The operators L and A form a “Lax pair” *).

=[AL]

*)Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm.
Pure Appl. Math., 21, pp. 467...490, 1968



Proof of the Lax pair relation

Inserting

A=4i0° —3i(uo, + o, u) =4io; —3i(2ud +u,)
gives for the commutator relation

[A,L]=]4i8; -3i(ud, +o,u) ,— 35 +u |
=—4i 83,07 |+ 41 |&5,u| +3i| &2, (ud,+ @Xu)]—si[(uax+ 0,U), U]

. v
'

0 Uyxx +3(Uyx Uy Oy ) O —Uyyy =AUy Oy —4UX5)2( 2uuy
- 2 - 2 -
=4| (uXXX +3(u,, 0, + uxﬁx)) -3l (u +4u 0, + 4u. O, ) —6iuu,,

=1u,, —6Iuu,

XXX

together with iL=iu, the relation iL,=[A,L] is thus exactly equi-
valent to the Korteweg de-Vries equation u,=u,, —buu,



As a consequence of the decomposition of the Schro-
dinger operator L and the corresponding Lax pair oper-
ator A the time development of the eigenfunctions ¢
satisfying the eigenvalue equation

Ly =Ey
can be written as
. Oy
I—=A
oa Y

So it is possible to associate the linear operator L with
the Korteweg-de Vries equation and to reinforce the
solution to a spectal problem of the operator A.



For solving the spectral problem of the Lax pair oper-
ators we assume that the solutions u(x,t) of the Korte-
weg-de Vries equation are (1) continous, (2) bounded,

and (3) tend to O for |x|—>e°
u(x,t)

T exp (-ikx) R exp (ikx)
< o exp (-ikx)
. i e

X

Scattering solutions corresponding to the continous
spectrum of the linear operator L

120



For the time evolution of the eigenfunctions of the self-
adjoint linear Schrodinger-like operator L we split the
eigenvalues E into bound state and continous state

values

n

- —x% bound states
k? continous states

and introduce the asymptotic eigenfunctions

;
_Kn‘x‘

e for X > +o0
W, =1 bound states

C, (t)e = for x — —oo
(e ™ 1 R(K,t)e™ for X — +o0
T(k,t)e™ for x —» —o

Wy —> 9 continous states




For the discrete spectrum of the time development
governed by the Lax pair operators

oy,
ot

in the asymptotic limit |x| >oo where A —4id}, since u

:A\']n

vanishes, we get ac
" =dc,

This is simply solved and gives
c (t)=c (0)e*
where c(0) is determined by the initial data u(x,0) of

the Korteweg de-Vries equation



For the continous spectrum we get
v, =ak,t)e" +b(k,t)e ™ x — 400
inserting this in the time development i% =Avy,

ot
gives with the asymptotic expression A — 4i¢’

i0, (a(k,t)e™ + b(k,t)e™ ) =4id; (a(k,t)e" +b(k,t)e ™)
or because of the linear independence of the exponential
functions g a(kt)=—4ika(kt),  8,b(k,t)=4ik®b(k,t)

Integration leads to
a(k,t) =a(k,0)e ™, b(k,t) = b(k,0)e**"
and for the reflection coefficient to
R(k,t)=a(k,t)/b(k,t) = R(k,0) e ¢



Exactly solvable potentials with the asymptotic u(Ixi—w) =0

name formula factorization eigenvalues
o-potential |u=—-2y5(x) H=b"b—v* g, =7

b=0, +ysignXx
Poschl-Tel- (A -1) H=b*(W)b() - (A -1)? |, =—(A —1+ V)’
ler potential cosh®x b(L)=0, + (L -1)thx
rectangular —C* [X|<1  |H=b'b+eg, £, =— K
potential ¥ 7 4 X|>1 Kk,  [x|>1 [ from

b=0, + —

hole Lk, tank,x [x|<1]Ko BNKo =15

with k, tank, =«, withk, =/C* — 15
Scarf Il |y=p2 B A Ay peh, e, (A)=—(A-VY
potential cosh” ax +A?

+ B(2A+) tanhax b, =0, + A tanhx +coshx

cosh ax




Inverse scattering theory

Given the energy levels of the Schrodinger

equation (—8§ + u)\p:kw

find the potential u

1) Asymptotic behavior for |x| >

Assumption u(|x|—>%=)=0

scattering states (e L Re ™ w10

incidentwave  reflected wave
L=k’>0 vy, =+
k

L transmitted wave

bound states

—KpX

e forx >

c.e™ forx — —oo

A=Kk, Wy, (X)={



2) Complete solution

With the Green’s function of the asymptotic of the
Schrodinger equation

(-0% - K*)G(x,x)=8(x - X) = G(x,X) :ieikxx'

the solution of the complete Schrodinger equation

(=05 +u09)wi 0 =K i () or (=05 =K )y () = uG) w0
I(X)

reads

Wi )= 0+ j dx' G(x,x) I(x) =€™ — - j dx'e" " u(x Yy (x)



The complete solution is a linear integral equation
representing the sum of an incident plane wave and an

outgoing wave
limy, (X)=e" + R(k)e™™ k>0

Together with the bound states the integral equation
can be put in the general form

g(xy) + F(xy) + [ d2 F(y+2)g(x,2) =0

F() :2—171_ joo R(K)e™dk + Y c2e ™ u(x.t)= —zdixg(x,y: X)

as shown by Gelfand and Levitan®). The function F(x+y)
is related to the scattering data R(k),c,and k...

*)Gelfand, I.M., Levitan, B. M., On the determination of a differential equation from its spectral function
Am. Math. Soc. Trans. 1, 253...304, 1951



Inserting the spectral data for the evolution of the
Korteweg-de Vries equation

Inserting the time developments of the coefficients in
the eigenfunctions found for the Korteweg-de Vries

equation
Cn (t) = Cn (O) e41<ﬁt | R(k,t):R(k,O)e_Sikt

into the Gelfand-Levitan integral equation, we obtain

N
F(x+y,t)=> c2(0)g e
1

1 +00 _ .
+— | dkR(k,0) )-8kt
> j (k.0)



Discrete spectrum only: one soliton solution

If the potential u(x,t) has only a discrete spectrum and
is reflectionless (i.e. R(k,0)=0) and if we first consider
N=1(i.e. E=-k? is the only eigenvalue), then the solution
of the Gelfand-Levitan inte%ral equation
g%, ) +F(x+y,+[dzF(x+y,Dg(x.y,1)=0

can be put in the form X

g(X,y,t) = — c?(0) e e _c2(0) g™ I dze **Vg(x,z,t)
from which

u(x,t)=— Zig(x y=X,t) = -2
follows i

2
K

cosh? (i(x — x°) + 4«°t)




Discrete spectrum only: N soliton solution

If we next consider a discrete spectrum with N bound
states E.=-k_?and again a reflectionless potential, we
get for the Gelfand-Levitan integral equation

gx.y,t) = ZC (0)68“( +fdze“ (th)] Y

with the N sollton solution

2
K

u(x,t) = —22 "

cosh? (i, (X — X°) + 4ic’t)

Each soliton has a velocity -4k 2, and the bigger
solitons travel faster.



Conservation law

—— AX

AX

AX

-1
N, 1) = k(i,t) - Ax

IdN(i,t)
dt

Traffic flow as forward difference?*)

gives

The approach reflects the forward orientation of the drivers and
the asymmetric interaction in contrast to molecules in a gas or
atoms in a solid state

The forward difference approach is summarized
q,, = K@, )v(i+11)

q(i = i+1,t)=k(i,Hv(i +11)

*) Hilleges, M., Ein ph&dnomenologisches Modell des dynamischen
Verkehrsflusses in Schnellstraennetzen, Diss., Uni Stuttgart, 1994 .

I+1

= K¢ (1L)AX =~y + 0

qin — k(l _1’ t)V(I’ t)




Conservation law (cont‘d)

A continuum approximation allows the Taylor expansion

V(X,1)+AX vy (X, 1)+

q.. =g > i+11) =Kk(x,t) 2 3
. +(AX) Vyx (x,t)+(A)g) Vyxx (X, 1)+...
K(X,t)-Axky (X, 1)+
g, =q(i-1—-1i,t) = Ax)2 Ax)S V(X,t)
+( ) Kyx (x,t)—( ) Kyexex (x,t)+...)
. dN(i,t
Inserted Iinto d(t ) = k¢ (i, ) AX = —qgut + Qi
gives the conservation law
(K « AX ’ < (Ax) ” K
= (kv RV RV R V) = (KVyex * Koex V) +



This can be transformed into a new conservation law

2
kt +qx — O, q= kV-I—%(kVX — kXV)+ (AX)

(kv +k v—-k Vv )+..(1)

For the speed variation we assume, that the density k
follows instantaneously an optimum velocity function:

v=V,, (k) (2)

opt
Vopt (K) Is the equilibrium speed-density relation from the fund-
amental diagram. (1) and (2) is a modification (i.e. infinitesimal

relaxation time) of the macro-scopic traffic flow model firstly

Introduced by Bando et al.*).

*)Bando, M., et al.: Phys. Rev. E Vol.5, pp. 1035(1995)



Selecting an operating point in very dense traffic

V A
Vopt(k)
Vi
|
|
! VoK) = Voss (k) + Ve (k) (K =,
| -0 ——(a+1)k0
I m
| K (L—K)|c,¥)
|
|
-
0 k K k



Decomposition for
very dense traffic

k=k_ (1-k) v=c,¥
gives
1 K+ 7, —(kv), = g(—\7XX +kv -
CO
koo -
V=—-"V (k,)K

Co

J/

A4
a+1

with ¢, =
2
kxxv)_ (AX)
6




Inserting the second relation
—@+)k+v=0

and sorting the terms yields to

Proper scaling V=AV" 0, =A0, (‘suppressed)
separates the equation of motion in terms of O(A) and O(A?).



Synchronized traffic description

O(A) contains only linear terms and no temporal changes

o Moo (AX) ) .
v+ =g +uv(°) +..=0 = ¥ =const. =¥
X 2 XX 6 XXX S
The constant solution v© is “synchronized traffic”: in very dense
traffic creeping shows undulations only on a coarse scale, and the
behavior in adjacent lanes shows no big differences (traffic in ad-

jacent lanes seems to be synchronized®)).

yn

*)Palmer, J., et al. Quality of Congested Traffic Int'l J. Adv. Systems 4 pp.168-182 (2011)



Korteweg-de Vries equation for speed drop propagation
(wide moving jam)

In O(A?) the time derivative and the nonlinear terms prevail

2
1\79 n ((\7(1))2) n (AX) \7(1)\7(1) + =0 > \~/(1) __solution of non-

X XXX ~ linerar equation
C, 3

v follows a nonlinear equation for the spatio-temporal speed
variations of the Korteweg-de Vries type: in very dense traffic
other traffic patterns than the synchronized traffic can occur
under certain parameter configurations.



Wlde mOV|ng Jam 'f{'.raje%tgrg of a vehicle

25

example *) 20

of a back- . ' Bottleneck
wards E - ! I 4--'
running _E 15
jam, stable S
over more <
than 20 km ul
S5
0

07:00 07:30 08:00 08:30
B Free Flow Synchronised flow [l Wide moving jam

*) R.-P. Schéfer et al., "A study about probe vehicle data to verify the three-phase
traffic theory". Traffic Engineering and Control, Vol 52, No 5, Pages 225-231, 2011



Distance 4 Distance

» [l Distance time dia-
\\\\\.‘\“‘ MW grams from traffic

A ' \\ W\ _
| \ of Tl N T patterns in very
\ ) ‘\‘\ | dense traffic show-

\ e ing stable backwards

Time

: 17:00 gmo 09:00 -
A5, Hessen, Germany M42, United Kingdom  Funning shockwaves
D 4D - .
ik i i remaining stable over
long distances *)
20 20 (red=low speed, yellow=high speed)
aINT .
\ it -
\ e QAR
10 \\ 10 A S \ ) —-e
| MWW |
*)Palmer, J., Rehborn, H., Congested Traffic
Time T:me Patterns, ITS World Congress,
0 e 0 +  Stockholm,2009
1500 1700 07:00 09:00 140

A3, Bavaria, Germany 1405, Orange County, USA



Using a mean field approximation for the
third order derivative term as indicated

M OGD (AX)Z gOgW — _ (AX)2

@
3 XXX 3 XXX 3 V

v(l)

B 1 +A
v = = j dx v (x, )

determined by a self consistency condition

later on



and a change in the variables (""suppressed)

X 1 .
v(l)‘ X" = — u=——u
3Ax AX

tH —

gives for the temporal and spatial behavior of
the (normalized) speed u

u +6uu, —-u_ =0

XXX

(nonlinear wave equation also called

Korteweg-de Vries equation)



This Is exactly the Korteweg-de Vries equation, descri-
bing waves with long wavelengths running stable like a
Tsunami*).

The Korteweg-de Vries equation as a nonlinear equa-
tion for the spatio-temporal speed variations describes
the impressive wide moving jams in very dense traffic,
l.e. the backward running shockwaves, which are so
stable, that even traffic from interchanges do not destroy
their structure (compare distance-time diagrams shown
above).

*) Remoissenet, M., Waves Called Solitons, Springer publ.,1999


Amazon_tidal_bore.avi

The solution can be found either by the Cole-Hopf
transformation™)

u=-2(InF),

which converts the Korteweg-de Vries equation into
a homogeneous quadratic differential equation

or by a direct ansatz, which is shown in the following
section and leads to the solution

N

bt =- cosh® (K(X —x°) + oot)

*) Whitham, G.B., Linear and Nonlinear Waves, Wiley, 1974



Soliton solution of the general Korteweg-de Vries equation

The general Korteweg-de Vries equation reads
u, +ouu, —pu,, =0
Introducing the collective coordinate
z=K(x-x%)+wt or 0=wd, 0,=K0,
gives

) ) 04
—u, +auu, —Bx’u,,, =0 resp. —u +Eu2 —Bx‘u, =C
K K

The boundary condition u=0 for x—>%+o°

® 04
leads to _u+_u2 _BKZUZZ =0
K



The ansatz fulfills the Korteweg- de Vries equation for

Q) 5 o , O
—=4Bx", —=PBx"—
K P 2 P N
As simple case the following parameter set is chosen
o=06 B=1 N = 2k* o = 4’

With this the self consistency condition
1 2K°
=— | dx
2A ¢, cosh? (K(X —x°)+ 41<3t)
is for k=/A\/2 automatically fulfilled.
As final result, if we restrict to second order and take V, , as the
asymptotic speed, we get for the speed profile in very dense traffic

1

.~ 2K°
V="V L 2 0 3
cosh” (k(X —x") + 4«k’t)
which describes a temporal and spatial variation, with a low speed
at the very tails and a stable backward running breakdown.

Kk=A/2



1 th z

The ansatz u=N , u, =-2N
cosh? z cosh? z
L1
. cosh? z
gives B , )
0 =—2N1 2 cosh 4z th“z =—Eu2+4u
cosh” z N

® 00

and leads to :4[3]{2 , —ZBKZE
2 N

K
As simple case the following parameter set is
chosen a=6 B=1 N = 2k° o = 4k’






This result fits excellently with the empirically
observed data from vehicle probes or inductive
loops in very dense traffic situations.

These data of the spatio-temporal patterns
allow the determination of the parameters like
backwards speed and breakdown amplitude
and make the perturbation approach very
reasonable.



Traffic patterns from free flow to very dense*)

Synchronized

Free flow flow

150,
75-

.;. Location

" [km]

Vehicle speed [km/h]

0
7:00 16
7:30 Bottleneck
Time 8

8:00
Wnde moving jam 8:30 0

*) Kerner, B., et al. Methods for tracing and forecasting congested
traffic patterns Traffic Engineering &Control 42, pp282-287, 2001




The multi-soliton solution of the original Korteweg-de
Vries equation
u, +6uu, —-u, =0
can be obtained under proper initial conditions and under
the boundary conditions u=0 for x—>xe< as shown in the
above inverse scattering theory section, or when we set
u=-2(Inf(x,t))
f(x,t) = det(M)

2 Kin l(ZiJFZj)
M. (X,1) =98, + e?
’ T K+ j

Z. =Kk, (X— X))+t

XX

with the collective coordinates z=k.(x-x.°)+w.t =k,(x-x.%)+k.3 t
as the only independent variables.



Distance-time patterns

| from probe vehicle data

autobahn A5 North
May 12, 2010

distance [km]

Lt . Wil o 130 km/h
| ,u § TR
n:;m.,m‘ww ‘lm ! v'mo ,{4“'%15%

12:00 14.00 16.00 18:00
time of the day

Multi-soliton solutions as explanation for distance

time pattern with several wide moving jams
R.-P. Schafer et al., "A study about probe vehicle data to verify the three-

phase traffic theory".
Traffic Engineering and Control, Vol 52, No 5, Pages 225-231, 2011
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Distance-time patterns

= - from inductive loops
£ 40 autobahn A5 North
8 30 May 12, 2010
8
2 20
Bl Free Flow Synchronised ﬂow

-

B Wide moving jam

14:00 16:00 18:00
time of the day

Multi-soliton solutions as explanation for distance

time pattern with several wide moving jams
R.-P. Schafer et al., "A study about probe vehicle data to verify the three-

phase traffic theory".
Traffic Engineering and Control, Vol 52, No 5, Pages 225-231, 2011 13
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