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General concepts in quantum mechanics 

Starting point: Newton’s law for point mechanics:

mx= F 
p

x
m

 
 

   
 
 
 

2

2

d1 d Vp dt H2dt

1 d 1
pp x V or p V 0

m dt 2m

 

  2

potential

kin.energy

d 1
H 0 H p V = E = const. Hamiltonian

dt 2m

equivalent to the conservation law

Vp

trajectory x = x(t)
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Alternative to Newton’s law for point mechanics: 
The Hamilton-Jacobi equation

k k k kP =P (p,x,t) Q =Q (p,x,t)

such that

holds
   





k k

S
H( P , Q ,t)=H(p,x,t) =0 (1)

t

 
    
 

k k k k

k k

H H
P = 0 P =const. Q = 0 Q = const.

Q P

Sought is a canonical transformation

This solves the mechanical problem completely and 
the Pk and Qk are integrals of the equation of motion



If we insert

into equ. (1) we get the Hamilton-Jacobi differential 
equation for the action spectrum S 
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k k

k k

SS
(p) P

x Q


 
 

k k

k k

k

S(x ,P , t)S
H(p = , x , t) 0

x t


 

 

which has the vivid meaning of a 
parcel postage rate depending on
weight&transport speed&distance  

The generating function S for the transformation (1)
is the action spectrum with dimension

[S]=  energy ∙ time  
or  mass ∙ velocity ∙ distance   
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For a conservative system for which a  potential exists 
the Hamilton function reads

and the Hamilton-Jacobi differential equation is given 
by

The Hamilton-Jacobische differential equation is a partial differential 

equation for the f+1 variables xk and t ( f= number of degrees of 
freedom). The Pk are constants according to  the definition of the action 
spectrum.
The differential equation is nonlinear and there is no chance to find a 
general solution  (which depends on arbitary functions).

   
2

k k

p
H( p , x , t) V(x)

2m
 

 2

k

k

S 1 S
( ) V( x )

t 2m x
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In quantum mechanics we start with the Schrödinger 

equation, an equation of motion for the wave func-

tion ψ with a Hamiltonian formed by a translation

rule

     
2p

i =H H= +V p V V
2m i

Schrödinger equation for the wave function ψ

Instead of sharp trajectories Ω(t), we have now 

expectation values ∫ψ*Ωψd3x formed with the wave 

function ψ for finding Ω with a certain probability.
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Erwin Schrödinger

born 1887 in Vienna, Austria

1921 1 year at Univ. Stuttgart!!

1926 Schrödinger equation

1933 Nobel prize

1936 emigration to Dublin

Ireland

1944 “What is life”

1956 Return to Vienna

1961 died in Vienna

Bust of 

Erwin 

Schrödinger

at the Univ. 

of Vienna

Excerpt of the Univ. calendar 1921

“Erwin Schrödinger- dyn. Systems”

//commons.wikimedia.org/wiki/File:Erwin_Schrodinger_at_U_Vienna.JPG
//commons.wikimedia.org/wiki/File:Erwin_Schrodinger_at_U_Vienna.JPG
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Classical Limit of Quantum Mechanic: Quasi Classical Approximation.

For sufficient large momentum of a particle (small de-Broglie-wavelength) the beha-

vior does not differ from classical mechanics. The limiting process from quantum me-

chanics to classical mechanics is demonstrated easiest if a wavefunction in the form

is inserted into the Schrödinger equation

leading for S(x,t) to 

The comparison with the Hamilton-Jakobi differential equation of classical mechanics

with the classical action spectrum S shows similarity in the limit ħ→0. 

(reminder: the trajectories of a classical particle are orthogonal to the plane S=const.)

2

kin

2
2

p
E

2m

i H ( V)
2m



       

i
S(x,t )

(x, t) e 

2 iS ( S)
V(x) S

t 2m 2m

 
    


2S ( S)
V(x)

t 2m
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Elementary application examples 

• Rectangular potential hole 

• Square well potential 

• δ-potential 

• Potential hole with superimposed δ-wall/hole
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-C2

V

-1                0            1                                               x

The Schrödinger equation for a single particle moving
in a one-dimensional rectangular potential hole with
normalized width

reads

2C for x 1
V(x)

0 for x 1

 
 



 2

x V(x) (x) (x)       

Rectangular Potential Hole



Ground state
The ground state of the Schrödinger equation for a single
particle moving in a one-dimensional rectangular potential
hole is given by

under continuity conditions at x=±1. Fitting the continuity
conditions at x=±1 for the derivative of φ0 gives

or

14

0

0 0 2 2

0 0 0( x 1)

0 0

cos k x x 1
= C k

cos k e x 1

N

N
 

 
   



2 2

0 0k C  

2 2

0 0 0 0 0k tank = C k   

0 0k Ccosk



gives

15

2 0

0 0 0

0

k
k k tan k

π/2 k
 



as lower limit

2 2 2 4

0 0 0

1 1
k κ or κ + C C C

2 4
     

as upper limit
2

2 2

0 0

π
k π/2 or κ C (π/2) C

8 C
    

Summary(C>0)
2

0C κ C  0κ

C
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Exited states

symmetric eigenfunctions

asymmetric eigenfunctions

Continuity of φ´ at x=1 gives

for the symmetric eigenfunctions

and for the asymmetric eigenfunctions 

2 2 s 2 2

( x 1)

cos k x x <1
k C C k 1,2,3,...

cos k e x >1
N





      




         



( x 1)2 2 as 2 2

( x 1)

sin k x x <1

k C sin k e x >1 C k 1,2,3,...

sin k e x < 1

N 





 

      

 






          

 

2 2 2 2

2 2 2 2

C k C k
tan k k arctan 1,2,3,...

k k

k k
tan k k arctan 1,2,3,...

C k C k

 

 

 

 

 

 

 
   

     
 



The wave numbers kν in the energy eigenvalues εν= kν
2- C2 obey the relations 

for the symmetric eigenfunctions

and for the asymmetric eigenfunctions

with the transformation to the principal value. Both results can be summarized as

including the groundstate wavenumber k0. Since kν< ׀C׀ and

2 2 2 2 2 2

2 2 2 2

2 2

C k C k C k
tan k k arctan Arctan 1,2,3,...

k k k

C k C kk
tan k k arccot ( 1) Arctan 1,2,3,...

k kC k
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Evaluation of the relations                            and

2 2

2 2

C k k
tan k  tan k

k C k

 

 

 


  



 

2 2

max

max

C k
k Arctan or k Ccos (k ) 0,1,2,...,

2 k 2

C
, ... largest integer from ...

(π/2)



  



 
        

 
   

 

2 2

ν

ν

C k
Arc tan

k 2

 




For C > νπ/2 the conditional equation

simplifies with

to

which gives for the energy eigenvalues

For an infinitely deep potential hole ( C2 →∞ ) the conditional equation has the limit

which leads to the eigenvalues

in accordance with the eigenvalues of the square well potential
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2 2

2 2 2

C k
Arctan and k ( +1) 0,1,2,...

k 2 2

( +1) ( ) C 0,1,2,...
2









  
    


     


ν

ν

2 2

2 2 2 2

ν

kπ
k = ν Arccos

2 C

π
C= ν , 1

2

k ... C ...
2 4 4

k C ( )
2
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π/2                    π 3π/2           C

kν

3π/2

π

π/2

νmax=2νmax=0 νmax=1

k0

k1

k2

k0≈ C

k1≈ C

k2≈ C

k0→ π/2

k1→ π

k2→ 3π/2

ν ν

max

cos(k ) k / C
2

C cos k 0,4,8,...

C sin k 1,5,9,...
k

C cos k 2,6,10,...

C sin k 3,7,11,...

C
k ( 1)

2 2 ( / 2)














  

  


 
 

  

  

  
          

 

The conditional equation 

for the wavenumbers

can be transformed into

with

Results for C2=25

ν νπ/2 kν (ν+1)π/2

0 0.0 1.306 1.571

1 1.571 2.596 3.142

2 3.142 3.837 4.712

3 4.712 4.937 6.283
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εν

ε2

ε1

ε0

π/2                π 3π/2                 C
2 2

νk C  

2C

Energy eigenvalues

ν εν

0 -23.29

1 -18.26

2 -10.27

3 - 0.92

Results for C2=25
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Scattering states

After analyzing the bound states (ground state, excited states) we investigate 

the scattering states (ε = k² > 0)

The Schrödinger equation

is solved in 3 regions: (1) x < -1, (2) -1 < x < 1, and (3) x > 1.

(1) x < -1 :

(2) -1< x < 1:

(3) x > 1:

only outgoing wave

 2 2

x k kV(x) (x) k (x)    
2C for x 1

V(x)
0 for x 1

 
 



ikx

k (x) Te 

i x i x 2 2

k (x) Ae B e C k       

ikx ikx

k (x) Ie R e  
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Since the potential is finite everywhere, both the wave function and its deri-

vative must be continuous everywhere.

At x = -1 these two conditions yield

at x = 1 we have

which can be summarized in matrixform

ik ik i i

ik ik i i

Ie R e Ae B e

ik(Ie R e ) i (Ae B e )

   

   

  

   

i i ik

i i ik

A e B e T e

i (A e B e ) ik T e

  

  

 

  

i i ik

ik

i i ik

ik

i i ik

i i ik

e e e 0
Ie

Ak
e e e 0 k

B Ie

e e 0 e R
0

k T
e e 0 e 0
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We have 4 linear equations for the unknowns R,T, A, and B, so we can 

express these constants in terms of the amplitude I of the incident wave,

which is put to 1 (C≠∞) for simplicity.

Inserting yields

In the limit C2→∞  T, R, and I→0 , and there is no scattering solution. In this 

limit and only the bound states exist

2

2 2

1
T

1 ( ² k ²)²sin²2 / 4k² ²

R T 1
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We can write this in original parameters and get

The transmission becomes 1 (i.e. no reflection) under the condition

2

4
2

1
T

C
1 sin 2 C²+k²

4k²(C² k²)






2 C² k² n n 0,1,2,...   

This phenomenon occurs in the Ramsauer-Townsend effect*), which 

involves the scattering of electrons off atoms of inert gases. Classical 

physics predicts that the number of electrons scattered should increase 

monotonically with their energy, but in fact a minimum is observed for 

certain electron energies. A model in which the inert gas atom is treated 

as a finite square well provides a simplified explanation of the effect.

*) Reference: Griffiths, David J. (2005), Introduction to 

Quantum Mechanics, 2nd Edition; Pearson Education



  

   

0

0 0

0 0 2 2

k x 0 0

0

k k

x 0 0 0 x 0 0 0
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x 0 0 0 0 0 0

2

2 0

x 0 0 02

0

k tan k x for x 1
b κ C k

κ for x 1

b b

k tan k x (1 x ) κ ( x 1) k tan k x (1 x ) κ ( x 1)

k tan k x (1 x ) κ ( x 1) k tan k x (1 x ) κ ( x 1)

k
(1 x ) ( k tan k x κ )δ( x

cos k x



 
    





             

             

        

2
0

0

0 0

0

2 2 2

0 0 0

1 1 (1 x )1
cos k x

2 2 2 2

x 0 0 0 0 0 0

V ε

2 2 2 2

0 x 0 k k 0 0 0 0

1)sign x

k tan k x (1 x ) κ ( x 1)

(k κ ) (1 x ) κ with k tan k κ 0

H ε = +V ε b b ε κ V (k +κ ) (1 x )



 

 



     

         

          

Factorization

The definition                                                                       gives

and allows the decomposition
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!



Square-Well Potential
The Schrödinger equation for a single particle moving in a one-dimensional rectan-

gular potential hole shows in the limiting case C2 → ∞ no scattering states solutions.

We can therefore the potential rescale by adding C2 and get for a infinitely deep

square-well potential of width ℓ

In dimensionless variables (x‘=x/ℓ, V‘=V/(ħ2/2mℓ2), ε=E/(ħ2/2mℓ2), ψ‘=ψ/√ℓ), ‘ sup-

pressed ) the associated Schrödinger equation reads

with the solutions

and

Fitting the boundary conditions gives
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0 for x
V(x)

else

 
 



 2

x

0 x 1
V(x) (x) (x) V(x)

x 1
  

 
       

 
as

ν ν

ν νs

ν ν

sin k x
x 1 0 else

cos k x

N

N


    


as,s 2(k )  

as s

ν ν

1
(1) 0 k 1,2,3... ; k ( ) 0,1,2...

2
            

as,s 2 2 2

ν(k ) ( 1) ( ) 0,1,2,...
2




      



Factorization gives

Generalization of the decomposition gives

with the generalized Hamiltonian

2
2 2 2 2 2 2 2

x x x x 2

H( )

2
2 2

x x 2

( 1)
L L ( tan x)( tan x) tan x tan x

2 cos x

( 1)
H( ) V

cos x
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2 2

2 2 2

x 0 x x x

2 2 2 2 2

x x

1 1
1

2
cos x cos x

2 2

V(x) ( ) L L ( tan x)( tan x)
2 2 2 2 2

( ) tan x tan x ( )
2 2 2 2 2

 




 

    
             

    
      

α = 1



Ladder operators

The commutation relation

introduced into the Schrödinger equation with the generalized potential

gives for γ → γ+1 

comparison with

gives                                   and

2 2 22

2 2 2 2

2 2

1 1

(2 1)b b (2 1)

2 2 2 2

(H( 1) ( 1) ) ( 1) ( ( 1) ( 1) ) ( 1) b

b b b ( 1) ( ( 1) ( 1) )b ( 1)

(H( ) )b ( 1) ( ( 1) )b ( 1)


 



   

  

      

    

 

    

                   

            

                

2 2 2 2

1 1 1(H( ) ) ( ) ( ( ) ) ( )             
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2
2 2 2 2 2 2 2

x x x x 2

2 2 2 2

1 1 x x x

2
2 2 2 2

x 2

( 1)
b b ( tan x)( tan x) tan x tan x

cos x

b b ( ( 1) tan x)( ( 1) tan x) ( 1) tan x ( 1) tan x

( 1)
( 1) b b (2 1)

cos x



 



 



 

   
                       

                        

   
           

1( 1) ( )       1( ) b ( 1)

      



starting with the ground state

gives

or for γ=1

and the ladder operator representation reads
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2 2

0 0b ( ) 0 resp. ( )       
2 2

1 0

2 2

2 1

2 2

2 2

( ) ( 1) ( 1)

( ) ( 1) ( 2)

....

( ) ( )

(1) ( 1)





         

         

      

    

1 0

2 1 1 0

1 1 0

( ) b ( 1)

( ) b ( 1) b b ( 2)

....

( ) b b ... b ( )
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Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

The Schrödinger equation for a particle in the hyperbolic

Pöschl-Teller potential reads (first for the scattering states) 

2 2

2 2 2

x 2

2
2 2

x 2 2

(λ th x)(λ th x) λ

2 2

x x

λ(λ+1)
ε k 0 ( )ψ=k ψ λ 0

cosh x

λ λ
ψ=k ψ

cosh x cosh x

( λ th x) ( λ th x) λ ψ=k ψ







    

 
  
   
 
 

 
     
 
 



 

x x

2 2 2 2

x x

2 2

x

s

k

k

as

thx signx

( +λsignx)( +λsignx)

λ (signx) +λ 2λδ(x)+λ

2λδ(x) ψ=k ψ

1
ψ sin(k x α )

π
ψ tan α k / λ

1
ψ sin kx

π
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Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

For the scattering states (ε > 0) only the asymptotic behavior is

considered. |x|→∞ gives

and the Schrödinger equation has the asymptotic form

with the solution
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Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

The general solution is a linear combination

We want a solution with the asymptotic form

i.e.

k k

k k

s as

ikx ikx

ikx

i( kx α ) i( kx α ) ikx ikx
ikx ikx

i(kx α ) i(kx α ) ikx ikx
ikx

ψ=cψ +dψ

e +Re x < 0
ψ=

Te x > 0

c e e d e e
e +Re

2i 2iπ π

c e e d e e
Te

2i 2iπ π



     


   





 
 

 
 



Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

Comparison of the coefficients  of eikx and e-ikx results in

T and R can be computed from these equations to

satisfying the conservation law

k k

k k

k k

iα iα

iα iα

iα iα

k k

2 2

c d c d
1= e + R= e

2i π 2i π 2i π 2i π

c d c d
0= e T= e

2i π 2i π 2i π 2i π

R e cosα T ie sinα

T R 1
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Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

For the bound states (εn < 0) the Schrödinger equation for the

hyperbolic Pöschl-Teller potential is given by

The decomposition into 2 hermitian conjugate factors was done

with regard to a ground state for which a norm is possible and

enables the estimation

2

2

n x n n n2

2 2 2

x n n n2 2

(λ th x)(λ th x)

2

x x n n n

(λ)(λ)

2

n

λ(λ+1)
H(λ)ψ ( )ψ =ε ψ λ>0

cosh x

1 λ
( λ (1 ) λ )ψ =ε ψ

cosh x cosh x

(( +λ th x) ( +λ th x) λ )ψ =ε ψ

λ +ε 0







  

    

  





Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

From the estimation follows for the ground state which can 

be normalized

Changing λ→ λ 1 in the Schrödinger equation gives    

Multiplying with           from left gives

Inserting the commutation relation

n n n

2

n n n

x x x x

H( 1) ( 1) ε ( 1) ( 1) ( )

( )

( )( ( 1) ( 1) ( 1) ) ( 1) ε ( 1) ( ) ( 1)

( 1) ( 1) ( ) ( )

( ( 1) thx)( ( 1) thx) ( thx)( thx)

2 1
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2 λ

0 0 0ε λ or ψ 0 ψ cosh x λ>0N      
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2

n n n

( ) ( ) 2 1

2

n n n

H( )

n n n

( )( ( 1) ( 1) ( 1) ) ( 1) ε ( 1) ( ) ( 1)

( ) ( ) ( ) ( 1) ε ( 1) ( ) ( 1)

H( ) ( ) ( 1) ε ( 1) ( ) ( 1)



  

     

  



 

                     

                 

             

Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

gives

Comparison with

yields to

n 1 n+1 n 1

n n+1 n 1 n

H( ) ( ) ε ( ) ( )

ε ( 1) ε ( ) ( ) ( ) ( 1)
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Excursus: Schrödinger equation for the 

hyperbolic Pöschl-Teller potential

Starting with the ground state gives

and allows the ladder representation

 

2

0

2

1

for2

n max unambiguousness

ε

ε ( 1)

...

ε ( n) n 0,1,2,..., n

 

   

      

1 0

2 1 0

n 0

n factors

( ) ( ) ( 1)

( ) ( ) ( 1) ( ) ( 1) ( 2)

...

( ) ( ) ( 1).... ( n 1) ( n)
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Synopsis of potential well and Pöschl-Teller potential



Potential well Pöschl-Teller potential

Factorization

Area under potential hump

Ground state
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0 0
2 2
0 0

0

2 2

k k 0

k

k x 0 0 0

H b b V C (1 x )

b k tan k x (1 x ) ( x 1)





      

        

2

2

x

λ(λ+1)
H λ V

cosh x

λ th x λ 0

    

    

0

2 2
0

k 0

0 0

C k ( x 1)

0

2 2 2 2 2

0 0 0 0

b 0

= cos k x (1 x )

+ cos k e ( x 1)

(C k ) C sin k

  

  

  

 

       

N

N

0

0 λ

2

0

φ 0

φ
cosh x

ε λ

  



 

N

1

2 2

1

A ( V(x))dx C dx 2C

 

 

     2

( 1)
A ( V(x))dx dx 2 ( 1)

cosh x

 

 

  
       



Potential well Pöschl-Teller potential

Conditional equation for ground state eigenvalue

Bound states eigenvalues

Scattering states eigenfunctions and eigenvalues
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2 2

ν

2 2 2 2

C k k
k Arctan or = cos(k )

2 k C 2

C
= k C C sin (k ) 0,1,..,

2 (π/2)



 



  

 
    

 
         

 

2 2

0 0

2 2 0
0 0 0 0

=k C

k
k tan k = C k or cosk =

C

 



 2ε ( ) 0,1,2,...,       

k

k

ikx iαikx

k

kikx iα

k

2

k

e cosα e x <0 k
ψ= tan α =

λi sinα e x >0

ε =k

 



 



ikx ikx

ikx

2 2 2

k
4 2 2 2

2 2 2

e +R e x < 1
ψ=

T e x >+1

1
T =1 R = ε = k

C sin 2 C +k
1

4k (C +k )

 









0                                                x

-β2

The Schrödinger equation for a particle in a δ-potential reads

2

xΗφ ( 2βδ(x))φ=ε φ β>0  

44

δ-potential

φ0

V

with natural boundary condition                         we get

ground state 

scattering states

( x ) 0)  

x 2

0 0e


     

s as 2

k k k k k

1 1
sin(k x ) sin kx k tan k / k 0          

 



Factorization

Decomposition

gives

From this it follows

and for the ground state
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x x

2 2

x

2 2

x

H

2

2

x2

0 0 0

b sign x b sign x

b b ( sign x) +( sign x)

2 (x)

H b b

b 0 eN
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The  Schrödinger equation for a infinite square well with a δ-potential in the middle 

reads

2

x sH ( V )      
2

c

S

c

2 (x) for x x
V

for x x

   
 

 

2

SV 2 (x)    

2 2

0 c

2 2

c

0 x 1

k 0,1, 2,3, ... x 1




      
  

     

2 2k 0,1, 2,...     

2

SV 2 (x)   

ß2

xc                x

opaque wall

(infinitesimal thin)

ß > 0

V
s

ß2

δ – Potential hole

ß < 0

V
s

xc                x

Schrödinger equation for infinite square well 

with superimposed δ-wall/hole in the middle
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Eigenfunctions and Eigenvalues
The eigenfunctions, which automatically fulfill the infinite wall boundary conditions, are

ground state

excited states

The remaining boundary condition  is the jump condition                                       

which has with                                            the simple form  and acts only on

the symmetric states

ground state

excited states

using the principal value

s s 2 2
0 0 c 0 c

0 0s s 2 2

0 0 c 0 c

N sin k ( x x ) k β βx 1

N sinh κ ( x x ) κ β βx 1

     
    

    

s s 2 s 2

c

as as 2 as2 as

c

N sin k ( x x ) k 1,2,3,....

N sin k x k k 1,2,3,...
x

    

     

        


        

(0 ) (0 ) 2 (0) 0       
as,s as,s(0 ) (0 )      (0 ) (0) 0   

s
s 0
0 c c

k
tan k x βx 1   


s

s 0
0 c ctanh x βx 1


    


s

s

c

k
tan k x 1,2,3,....

    


s s

c

1
k x ( ) arctan ( k )

2
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and for the symmetric scattering states

as well as for the antisymmetric scattering states  

Eigenfunction expansion in the limiting case xc→ㆀ ,  β < 0

The limiting case xc→ㆀ , β < 0 gives for the ground state

0 c( x x ) x s 2 20

0 0 0 c 0 0 0

N
N sinh ( x x ) e N e 0

2

   
          

s s

c

1
k x ( ) arctan ( k ) 1,2,3,...

2
        

s s

cN sin k ( x x )    

s s s 2 s 2

c

N cos k x k k 1,3,5,....
2x

     


        

as 2 as2

ν ν ν

c

ν π
k ε β k ν 2,4,6,...

2x
   

as as

ν ν νφ =N sin k x
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ν=0 (part 2)
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ν=3

s

ck x ( 1)   

Wave numbers ks
ν of the symmetric eigen-

functions φs
v fulfilling the boundary conditions

cβx

s

ν ck x

→

→
0k 3( 1 )    0k 3(1 )  

k  
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Factorization of the Schrödinger equation with the infinite

square well potential and a superimposed δ-wall/hole in the

middle

βxc > -1 gives

similar expansion of            gives

c2 2

x c

x x 0

( x ) 0
H 2 (x) for x x with

( ) (x) 0



  

  
      

   

0 0

0

2 2 2 2

0 0 0 x 0 k k

k x 0 0 c

k H k 2 (x) b b

b k cot k ( x x )sign x

          

   

0 0k kb b

   
0 0

22

k k x 0 0 c 0 0 cb b k cot k ( x x ) sign x k cot k ( x x ) sign x      
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The expansion of           finally gives

comparison with the original gives the conditional

equation for the wave number k0

0 0k kb b

 
0 0

2 2 2

k k x 0 0 c

2 2

0 0 c 0 0 c

2 2

x 0 0 0 c

0

0 c 0 c

0

b b k 1 cot k ( x x )

2k cot k ( x x ) (x) k cot k ( x x )

k 2k cot k x (x)

k
cot k x resp. tan k x

k
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βxc< -1 gives

Expansion of           gives

this is in accordance with the original for

which again is the condition for the wave number κ0 to

fulfill the boundary conditions

   

 
0 0

22

x 0 0 c 0 0 c

2 2 2

x 0 0 c

2 2

0 0 c 0 0 c

2 2

x 0 0 0 c

0 c

0

b b coth ( x x )sign x coth (x x )sign x

1 coth ( x x )

2 coth ( x x ) (x) coth ( x x )

2 coth x (x)

coth x



 

         

      

        

       


  



0 0

0

2 2 2 2

0 0 0 x 0

x 0 0 c

H 2 (x) b b

b coth ( x x )sign x



 



            

     

0 0
b b
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Summary of the Factorization procedure

for the Schrödinger equation

The factorization procedure of the elementary Schrödinger 

equation application examples can be summarized as follows

We start with the decomposition

The selfadjoint form gives the inequality

where φ0 is the ground state and ε0 is the corresponding 

ground state energy.

The results of the factorization for the elementary examples 

are put together in the adjacent table.  

 2

x S 0 x(H ) ( V ) ( ) 0 W

                         

20

0 0 S 0

0

with 0 W= or W +W V


          





elementary

example

ground

state

factorization eigenvalues

bound states

square well 

potential

rectangular 

potential 

hole

+

x

H=b b

b= tan x
2 2
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0 x 1
V

else


 



2 2(1 ) ( )
2




   

2C 1
V

0 1

x

x

 
 



0 0

0

k k 0

2 2

0

k x

0 0

2 2

0 0 0

H=b b +

C k x 1
b =

k tan k x x 1

k tan k = C k

 

  
  





2 2

ν

ν

2 2

= k C

k
2

C k
Arctan

k







 


 




0

0

0 0 ( x 1)

0

2 2

0 0

cos k x

cos k e

= C k

N
 


  



 

s

0 0

0

cos k x x 1

0 else

 
  



N



elementary

example

ground

state

factorization eigenvalues

bound states

δ-potential

square well

with δ-

wall/hole
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V 2 (x)  

+

0

x

H=b b+

b= sign x



  

2

0   

2 +2 (x) x 1
V

x 1

  
 

 

2 2

0 c

0 2 2

0 c

2 2

x 1

k x 1

k

1
k ( )

2

Arctan 1, 2, ...
k

 





    
  

   

  

   


  

0 0

0

k k 0

k x

0 0

H b b

b

k cot k ( x 1) sign x

  

  



x

0 e


  N

c

s

0 0 0 c

βx 1

φ =N sin k ( x x )





c

s

0 0 0 c

βx 1

φ =N sinh κ ( x x )







2

2

q 1 a
V(r) 2D

r 2 r

 
   

 

2 r rV(r) D(e 2e )   
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3D harm. oscillator    Coulomb potential

Kratzer potential                                                 Morse potential

2 2

0

2

e ( 1)
V(r)

r 2m r


  

2
2 2

2

1 ( 1)
V(r) mω r

2 2mr


 

0 0

0 0

r r r r
2

r r
V(r) D(e 2e )

 
  

 



name formula factorization eigenvalues

3D harm. 

oscillator

Coulomb

potential 

Kratzer

potential

Morse 

potential
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Summary of further exactly solvable potentials (I)

2

2

1
V(r) r

4

( 1)

r






2

2 ( 1)
V(r)

r r


  

2

2 ( 1)
V(x)

x x

    
 

2x xV(x) e 2 e   

r

3
H( ) b ( )b( )

2

1 1
b( ) r

2 r

  


   

2

r

1
H( ) b ( )b( )

( 1)

1 1
b( )

r 1

 



   


2

2

x

γ
H(λ)= b (λ)b(λ)

λ

λ γ
b(λ) =

x λ

 

  

2

x

x

1
H(γ) b (γ)b(γ) (γ )

2

1
b(γ) e γ

2





  

    

n

3
( ) 2n

2
   

n 2

1
( )

(n 1)
  

 

2

2
( )

( )



   

  

21
( ) ( )

2
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Hulthén potential                                                Eckart potential

r/a

0 r/a

e
V(r) V

1 e




 



trigon. Pöschl Teller potential               hyperbolic (modified) Pöschl Teller potential

0

2

V
V(x)

cosh ( x)






2

2

A A
V(x) 2Bcoth x

sinh x


   



0

2 2

V(x)

V ( 1) ( 1)

2 sin ( x) cos ( x)



      
 

  

μ=3

μ=2

μ=1.5

γ=2



name formula factorization eigenvalues

trig. 

Pöschl-Teller 

potential 

hyperb. 

Pöschl-Teller

potential 

Hulthén

potential

Eckart 

potential
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Summary of further exactly solvable potentials (II)

2

2

( 1)
V(x)

sin x

( 1)

cos x

  


  


2

λ(λ+1)
V(x)

cosh x
 

2

x

1
V(x)

e 1
 



2

V(x) = 2B coth x

A(A 1)
+

sinh x





2
2

A A 2

A x

B
H(A) A

A

B
A coth x+

A

    

   

2
2

2

x

β 1
H b b ( )

2

1 x β
b coth

2 2 2

 
 

   

2

x

H(λ)= (λ) (λ)

(λ 1)

(λ)= +(λ 1) th x

 

 

  

, ,

2

, x

H( , ) B B

( )

B cot

tan



   

 

  

   

  

 

x

x

2( , ) ( 2 )        

2

nε ( 1 n)    

2
2

n

n 1
ε ( )

2(n 1) 2

 
  



2

n

2

2

ε (A n)

B

(A n)
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Scarf I  potential                                                     Scarf II potential

trig. Rosen-Morse potential                                hyperbolic Rosen-Morse potential

2 2
2

2

V(x)=

B +A A tan x
A B(2A )

cos x cos αx

  
    



2 2
2

2

V(x)=

B A A tanh x
A B(2A+ )

cosh x coshαx

   
  



2
2

2 2

V(x)=

B A(A 1)
A 2Bcot x

A sin x


    



2
2

2 2

V(x)=

B A(A+1)
A 2Btanh x

A cosh x
   





name formula factorization eigenvalues

trig. Scarf

potential

hyp. Scarf

potential

trig. Rosen-

Morse 

potential

hyp. Rosen-

Morse 

potential

2 2

ν

2

2 2

(A) A (A ν)

1 1
B

A (A ν)
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2 2
2

2

B A A
V A

cosh x

tanh x
B(2A+1)

cosh x

 
 



2
2

2

2

2

B
V A

A

A A
2Bcot x

sin x

  


 

2 2
2

2

B +A A
V A

cos x

tan x
B(2A 1)

cos x


  

 

2
2

2

2

2

B
V A

A

A A
2Btanh x

cosh x

 


 

A A

A x

H(A)=b b

B
b = A tan x

cosx



  

A A

A x

H(A) b b

B
b = A tanh x +

cosh x



 

A A

A x

H(A)=b b

B
b Acot x

A



   

A A

A x

H b b

B
b = A tanh x

A



  

2 2

ν (A) (A ) A    

2 2

ν (A) (A ν) +A   

2 2

ν

2

2 2

(A) (A ν) A

1 1
B

(A ν) A

   

 
  

 

Summary of further exactly solvable potentials (III)



Generalization for the group of all shape invariant potentials 

Generally all Schrödinger equations with shape invariant

potentials can be solved algebraically and are characterized by

the property

where a1 and a2 are 2 parameters, Θ is a constant eventually de-

pending on a1 and/or a2, and V± are amenable to the Ricatti

equation

The Hamiltonian of the considered Schrödinger equation reads
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2 1

2

2

x

x x

V (x,a ) V (x,a ) +Θ

W(x,a)
V (x,a) W (x,a)

x

H(a) = V (x,a)

( W(x,a))( W(x,a)) = B (a)B(a)

 










 



  

    



The substitution a1 → a2 in the original Hamiltonian gives

Inserting the property of shape invariant potentials yields

Multiplying the starting Schrödinger equation H(a2)ψ=εν(a2)ψ

from left with B+(a1) gives
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1 1

2

2 x 2 2 2

2 2 2
x 2

2 2 1
2 x 1

1 1

1 2 ν 2

1 2 2 ν 2 1 ν 2 ν 2

B(a )B (a ) Θ

H(a ) V (x,a ) = B (a )B(a )

W(x,a )
W (x,a )

x

W(x,a )
H(a ) W (x,a ) + Θ

x

B(a )B (a ) Θ

B (a )H(a )ψ (a )

B (a ) B (a )B(a )ψ (a ) B (a )ε (a )ψ (a )











  



  


   




   



 

 



Thus inserting of the property of the shape invariant potentials

yields

which can be summarized as

allowing the inaugurated ladder array in case of discrete eigen-

states

87

 
ν+1 1 ν+1 1

1 2 ν 2

1 1 1 ν 2 ν 2 1 ν 2

ψ (a ) ψ (a )

ν+1 1 ν 2 ν+1 1 1 ν 2

B (a )H(a )ψ (a )

= B (a )B(a ) Θ B (a )ψ (a )= ε (a )B (a )ψ (a )

ε (a ) Θ=ε (a ) ψ (a ) B (a )ψ (a )
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Relations among shape invariant potentials 
• algebraic approach 
• mapping by canonical transformation 
• Lie algebraic methods
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Factorization of the Schrödinger equation as central module 

for exact solutions, supersymmetry, shape invariance, 

group theory, and coherent states in quantum mechanics

factorization

shape invariance

supersymmetry exact solution

group theory coherent states
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The relation to generate the energy eigenvalues of the Schrödinger equation for 

supersymmetric, shape invariant potentials can be summarized as a Lie algebra 

approach

The Lie algebra uses a calculus, which starts with the commutation relation

i j ijk k ijk

i, j, k 1,2,3

1for i, j, k even permutation of 1,2,3
L ,L L Levi symbol

1for i, j, k odd permutation of 1,2,3

0 for any 2of i, jor k areequal





          


A Lie algebra is a vector space g over a field K together with an inner operation 

[⋅,⋅]: g×g → g ,  (x,y)↦[x,y] . The inner operation is called Lie-bracket and is subject 

to the following conditions:

•The inner operation is bilinear, that means it is linear in both arguments. 

[ax+by,z]=a[x,z]+b[y,z] and [z,ax+by]=a[z,x]+b[z,y] valid for all a,b∈K and all 

x,y,z∈g. 

•The inner operation fulfills the Jacobi identity. The Jacobi identity reads: 

[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 valid for all x,y,z∈g. 

•[x,x]=0 is valid for all x∈g.



The Schrödinger equation with the hyperbolic Scarf potential (genalized

Huthén potential) as an example for algebraic approach defining creation 

and annihilation operators*)

The definition of L-and L+ leads to the commutation relation

whereas
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A A A A

A A A A A 1 A 1 A A
ˆ ˆ ˆ ˆ ˆ ˆL ,L L L L L e b b e b e e b b b b b

      

       
       
 

A A A

2 2

n 1 n+1 n 1 n n +1 n

n 1 A n A n n A A 1

H(A) (A) ε (A) (A) ε (A 1) ε (A) ε A (A n)

ˆ ˆ(A) b (A 1) b e (A) L (A) resp. L e b b e

 

   

   

       

        

2 2
2

2

B A A tanh x
V A B(2A+1)

cosh x cosh x

 
   A A A x

B
H(A) b b b = A tanh x +

cosh x

  

+ +

A+1 A+1 A A 0
ˆ ˆ ˆb b b b (2A+1) gives L ,L 2A 1 2L 
      

*) Balantekin, A. B.,  Algebraic approach to shape invariance,  Phys. Rev. A57 (1998) pp.4981



0 0 0

n n 1 n n 1 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆL ,L 2L , L ,L L , L ,L L

1ˆ ˆ ˆL (y) (y) L (y) (y) L A
2

     

     

        
     

       

The further commutation relations read

and can be summarized as the Lie brackets

which are connected to the ladder operators
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A A

A A A A A

0 0 0 A A

A A A A A

1 1ˆ ˆ ˆ ˆ ˆ ˆL ,L L L L L (A )e b e b (A )
2 2

1 1 1 3 ˆ(A )e b e (A ) b (A )e b (A )e b e b L
2 2 2 2

 

  

    



       
 

           

A A

A A A A A

0 0 0 A A

A A A A A

1 1ˆ ˆ ˆ ˆ ˆ ˆL ,L L L L L (A )b e b e (A )
2 2

1 1 1 1 ˆ(A )b e b (A )e (A )b e (A )b e b e L
2 2 2 2
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Application Examples

A  Disaster description

• Brownian motion and Schrödinger equation

• Stochastic description of waterlevel undulations

• First passage time distribution

B  Traffic breakdown propagation

• Korteweg-de Vries equation, Lax pairs and Schrödinger

equation

• Conservation law in traffic modeling

• Korteweg-de Vries equation for wide moving jams
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Brownian motion and Schrödinger equation

Langevin equation as starting point

summary 

systematic fluctuatingfriction
force force

x

x

x

mx= x + F +

with correlated fluctuations

< >=0 < (t) (t )>=2D (t t )

and

F= (force derived from potential)

(mx) x

x (Langevin equation)

 

 

     

  

     

   



95source: http:// amp2005.blog.lemonde.fr/files/langevin

by_picasso.jpg und www.wikipedia.org/wiki/Paul_Langevin

Paul Langevin
*  January 23.1872

†  December 19.1946

- french physicist

- studied at the Ecole Supériere de Physique 

et de Chimie Industrielles de la Ville de Paris

- career at this school, director at last

- since 1909 professor for physics at the 

Collège de France

- student of Pierre (†1906) and 

Marie Curie (†1934). He was a friend 

of  the family and he had  1910 an

affaire with Marie Curie. 

- in the 30‘s and 40´s years he belonged to a 

bohemian in Paris with Picasso. 

- applied firstly in 1916 the Piezo electricity of 

quartz crystals  by constructing the first ultrasonic

object detector (Sonar)

Paul Langevin painted by

Pablo Picasso, 1938
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Trajectories of the system status with common start at x=0

T= point in time, when firstly hitting a certain critical value xcrit

xcrit

T T T

t
0

x
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    2

x

x

P(x,t) P(x,t) D P(x,t)x

drift   diffusion

Langevin equation

stochastic equivalent 
equation of motion
for prob. distribution
function P(x,t)



n

ß < 0

ß = 0

ß > 0

1
q 


ß < 0 stable for

ß = 0 stable for

ß > 0 stable for

1
q 



1
q 





n

ß < 0

ß = 0

ß > 0



n

ß < 0

ß = 0

ß > 0

1
q 


ß < 0 stable for

ß = 0 stable for

ß > 0 stable for

1
q 



1
q 



1
q 


ß < 0 stable for

ß = 0 stable for

ß > 0 stable for

1
q 



1
q 



Potential 
of the 
systematic 
force

x
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Special cases to interprete the Fokker-Planck equation 

a) Pure drift (D=0) 

Solution by method of characteristics

= sharp movement along the trajectory   x=x(t)

b) Pure diffusion (Φ´=0) 

= dissolving Gaussian distribution

 2

x xP(x,t) D P(x,t)    

xP(x,t) P(x,t)=0  

P(x,t)  P(x(t))

x=



 

2

xP(x,t) =D P(x,t)
2

0(x x )

4Dt
1

P(x,t) = e
2πDt
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General Solution for P(x,t) by Separation

Starting equation (Fokker-Planck  equation)

∂t=0 gives stationary solution

separation ansatz for complete solution

gives

or

 

 

2

x x

st st Φ(x)

x x

1
Φ(x)

st t t2

P(x,t) (x) P(x,t)

0 (x) P (x) P (x) e

P(x,t)= P (x) (x)e e (x)e

N 


 

    

      

  

1 1

22 2
x xe ( )e

  

      

x x

2 2

x

1 1
( )( )

2 2

1 1
( )

4 2
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The equation of motion for the probability distribution of

the Brownian motion (Fokker-Planck equation) thus has

the form of a Schrödinger-equation

with the Schrödinger-potential

and the correspondence 

2

x SH ; H ( V )     

2 2

S

st

1 1 1
V W W W

4 2 2

energyeigenvalue E time constant

particledensity * probability densityP

wave function  eigenfunction =P/ P

          

 

 

  



A short ethymology

• dis – aster ( latin origin ):

non/wrong constellation ( dis ) of stars ( aster )-

our ancestors believed in the influence of stars on

natural disasters ( floods, earthquakes,…)

• catastrophe ( greek origin: καταστροφή ):

revolution of planets around a central star, again-

the influence of stars on our live



average seasonal undulations during the year 

Source:  I.M. Janosia; Gallas; J.A.C.: Growth of companies and water-level fluctuations of the river Danube

20 000 data of daily water level of the river Danube, 

measured at Nagymaros, Hungary

Danube water level time series



 x ln(h(t) / h)
Langevin 

equation  

Fokker-Planck equation 

for probability P(x,t)

drift diffusion

x 2γsign x Γ  )t'δ(tD2)(t'Γ
~

(t)Γ
~



Φ (x) Γ 

PPΦP 2
xx 

= 2 sign x

2γ x

 

 

ht = daily water level of a specific day for year t

simple approach with constant flow rate γ and fluctuations

th

no

change

Γ(t)

fluctuationsin / out flow

if
hh

hh

t

t













t

t

hγ2

hγ2

Stochastic description of water level undulations

1th



tt 1 t

t

2 h(t )
h(t )

2 h(t )

2 hh h

2 h1



 
 

 
  

 



x2γst eγ(x)P




Stationary solution

gives

from this follows

x γ2   Φ 

x

lnγx2γ(x)Pln st 

x

0Pst  0(x)P)Φ( st
x 

transformation to

original variable






















hh)
h

h
(

hh)
h

h
(

hdh

dx
)x(P)h(P

~

12

12

stst

h

h
lnx 

(x)Pln st



probability density distribution as a function of the logarithmic rate of change. The data 

approximately collapse upon the universal (thin solid line).

Source:  I.M. Janosia; Gallas; J.A.C.: Growth of companies and water-level fluctuations of the river Danube

P

h

h
ln

Danube water level



Source:  Atila Salvai, university of Novi Sad (presentation – Ulm, city hall 6. of November 2007)

Water Balance in Vojvodina Region
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x x   

Eigenfunction expansion for the V-shaped potential

with natural boundaries

Separation with

transforms the Fokker Planck equation

2

x xP(x, t) ( '(x) )P(x, t)   

into a Schrödinger equation

2

x x x

' '
)( ) 2 x

2 2
 

              

with natural boundary condition

symmetric/ antisymmetric scattering states  

( x ) 0)  

x
e


  

as

k

1
sin kx 



2 2

k k ,k 0    

ground state 0λ0 

t2

)x(

e)x(eP 






)xksin(
1

k
s
k 


  ktan k



Term scheme



0

ground state

scattering states

x

(Matthew 22:14 – For many are called, but few are chosen)

v,Vs

Vs = 2 – 2(x)



Construction of the 

time dependent (conditional) probability distribution

using the completeness relation

0

0,5

1

1,5

2

2,5
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Probability and temporal drop of finding x anywhere below xcrit

Probability of flow over xcrit
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transforms the Fokker Planck equation into an eigenvalue equation

reflecting boundary

x = xcrit

absorbing boundary

)x(λ)x())x(Φ
2

1
)x(Φ

4

1
(- ννν

'''22
x 

tλ
Φ(0)

2

1
Φ(x)

2

1

e(0)(x)e0,0)|tP(x, 




 

x = -ℓ












  0(x))

2

(x)Φ
( x

which has to be solved under the boundary conditions

0|(x) 

Eigenfunction expansion

allows the decompostion 

with 

)x((0)(x)  

)x(|0,0)|tP(x, 
t=0



ℓ → ∞     gives

with jump condition at x = 0
























0xeN

0κ,κγλ

xx0
xκsinh

x)(xκsinh
N

(x)

xκ

0
2
0

2
0

crit

crit0

crit0

0

0

jump condition 

bound state

(0)γ2ε)(ε)( 000 

crit0 xκ20 e
γ

κ
1


 only solutions for

2

1
xγ crit 

and normalization gives 

scattering states

crit0x2
crit

2
02

exγ21

κ

γ

1
N





























0x)(kxsin
π

2

0k,kγλ

xx0x)k(xsin
kxsin

sin

π

2

(x) 22
k

critcrit

crit

k

k
2cotkxcot crit






First passage time probability distribution

0
,0

0
0
1

0
,1

5

0
,3

0
,4

5

0
,6

0
,7

5

0
,9

1
,0

5

1
,2

1
,3

5

1
,5

1
,6

5

1
,8

1
,9

5

2
,1

2
,2

5

2
,4

0,01

0,2
0

5

10

15

20

25

t2

critx

p(t)

)tk(γ

0 crit

2
xγ

crit

critt)κ(

xκ2
crit

xκx2
0

22
crit

2

0
2

crit0

crit0crit

e
kxsin

sin
k

π/2

dk
e

21x1

21x0
e

ex21

eκ2
p(t) 


























Korteweg-de Vries equation and Schrödinger equation

For the description of

(1) shallow water waves

(2) tidal bores, Tsunamis (Amazon_tidal_bore.avi)

(3) wide moving jams

the Korteweg-de Vries equation is perfect suitable as

equation of motion with competing nonlinear and disper-

sion terms

115

t x xxxu 6uu u 0  

Amazon_tidal_bore.avi


Korteweg-de Vries equation and Schrödinger equation (cont’d)

Introducing the linear operator L

where u is the solution of the Korteweg de-Vries equation. The

spectral problem of the linear operator is represented by a

Schrödinger-like equation

The eigenfunctions ψ[x,E,t] and the eigenvalues E of L depend

on t as a parameter and when t is fixed this equation is the well

known time-independent linear Schrödinger equation of quan-

tum mechanics for a particle in the potential u(x,t)
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2

x

xx

L u

L u E

  

      



Korteweg-de Vries equation and Schrödinger equation (cont’d)

Note that if u(x,t) evolves according to the Korteweg de-Vries

equation

and, if we chose

the linear operator L satisfies the operator equation

The operators L and A form a “Lax pair” *).

*)Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm.

Pure Appl. Math., 21, pp. 467…490, 1968 
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t x xxx

3 3

x x x x x x

u + 6uu u 0

A=4i 3i(u + u) =4i 3i(2u + u )

L
i A,L

t

 

      








Proof of the Lax pair relation

Inserting

gives for the commutator relation

together with iLt=iut the relation iLt=[A,L] is thus exactly equi-

valent to the Korteweg de-Vries equation
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As a consequence of the decomposition of the Schrö-

dinger operator L and the corresponding Lax pair oper-

ator A the time development of the eigenfunctions ψ

satisfying the eigenvalue equation

can be written as

So it is possible to associate the linear operator L with

the Korteweg-de Vries equation and to reinforce the

solution to a spectal problem of the operator A.
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L E

i A
t

  


 





For solving the spectral problem of the Lax pair oper-

ators we assume that the solutions u(x,t) of the Korte-

weg-de Vries equation are (1) continous, (2) bounded,

and (3) tend to 0 for |x|→∞

Scattering solutions corresponding to the continous

spectrum of the linear operator L

120

x

u(x,t)



For the time evolution of the eigenfunctions of the self-

adjoint linear Schrödinger-like operator L we split the

eigenvalues E into bound state and continous state

values

and introduce the asymptotic eigenfunctions
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n

2

n

2

x

n x

n

ikx ikx

k ikx

bound states
E

k continous states

e for x
bound states

c (t)e for x

e R(k,t)e for x
continous states

T(k,t)e for x










 


  
  



   
  





For the discrete spectrum of the time development

governed by the Lax pair operators

in the asymptotic limit |x|→∞ where                  , since u

vanishes, we get

This is simply solved and gives

where cn(0) is determined by the initial data u(x,0) of

the Korteweg de-Vries equation
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n
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xA 4i 

3n
n n

c
=4κ c

t





3
n4 t

n nc ( t) c (0)e 



For the continous spectrum we get

inserting this in the time development          

gives with the asymptotic expression

or because of the linear independence of the exponential

functions

Integration leads to

and for the reflection coefficient to

   ikx ikx 3 ikx ikx

t xi a(k,t)e b(k,t)e 4i a(k,t)e +b(k,t)e    
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ikx ikx

kψ =a(k,t)e b(k,t)e x 

3

xA 4i 

3 3

t ta(k,t)= 4ik a(k,t), b(k,t)=4ik b(k,t)  

3 34ik t 4ik ta(k, t) a(k,0)e , b(k, t) b(k,0)e 

k
k

ψ
i Aψ

t






38ik tR(k,t)=a(k,t)/b(k,t)=R(k,0)e



name formula factorization eigenvalues

δ-potential

Pöschl-Tel-

ler potential

rectangular

potential

hole

Scarf II

potential

+ 2

x

H=b ( )b( ) ( 1)

b( )= ( 1) th x
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Exactly solvable potentials with the asymptotic u(׀x׀→∞) = 0



Inverse scattering theory

Given the energy levels of the Schrödinger

equation

find the potential u

1) Asymptotic behavior for |x|→∞

Assumption u(|x|→∞)=0

scattering states

bound states
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2) Complete solution

With the Green’s function of the asymptotic of the

Schrödinger equation

the solution of the complete Schrödinger equation

reads 
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The complete solution is a linear integral equation

representing the sum of an incident plane wave and an

outgoing wave
lim

Together with the bound states the integral equation

can be put in the general form

as shown by Gelfand and Levitan*). The function F(x+y)

is related to the scattering data R(k),cn,and κn.
*)Gelfand, I.M., Levitan, B. M., On the determination of a differential equation from its spectral function

Am. Math. Soc. Trans. 1, 253…304, 1951
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ikξ 2
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g(x,y)+ F(x+y)+ dzF(y+z)g(x,z)=0

1 d
F( )= R(k)e dk c e u(x,t)= 2 g(x,y= x)

2 dx





 



  






ikx ikx

k (x)=e R(k)e k>0 
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Inserting the spectral data for the evolution of the

Korteweg-de Vries equation

Inserting the time developments of the coefficients in

the eigenfunctions found for the Korteweg-de Vries

equation 

into the Gelfand-Levitan integral equation, we obtain
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Discrete spectrum only: one soliton solution

If the potential u(x,t) has only a discrete spectrum and

is reflectionless (i.e. R(k,0)=0) and if we first consider

N=1(i.e. E=-κ2 is the only eigenvalue), then the solution

of the Gelfand-Levitan integral equation

can be put in the form

from which

follows
129

x

g(x,y, t)+F(x + y, t)+ dzF(x + y, t)g(x,y, t)=0





3 32 (x+y)+8κ t 2 8κ t (z+y)

x

g(x,y, t)= c (0)e c (0)e dze g(x,z, t)



   

2

2 0 3

d
u(x,t)= 2 g(x,y=x,t) 2

dx cosh (κ(x x ) 4κ t)


  

 



Discrete spectrum only: N soliton solution

If we next consider a discrete spectrum with N bound

states En=-κn
2 and again a reflectionless potential, we

get for the Gelfand-Levitan integral equation

with the N soliton solution

Each soliton has a velocity -4κn
2, and the bigger

solitons travel faster.
130

3
n n n

N
8κ t κ z κ y2 κx

n

1 x

g(x,y,t) c (0)e e dze g(x,z,t) e



 
 

   
 

 

2N
n

2 0 3
1 n n n

u(x,t) 2
cosh ( (x x ) 4κ t)


 

  




131

Δx

Conservation law

Δx Δx

N(i, t) k(i,t) x  
dN(i,t)

k (i, t) x q qt out indt
    

Traffic flow as forward difference*)

gives

The approach reflects the forward orientation of the drivers and 

the asymmetric interaction in contrast to molecules in a gas or 

atoms in a solid state

The forward difference approach is summarized   

q(i i 1, t) k(i, t)v(i 1, t)   

i-1 i i+1

*) Hilleges, M., Ein  phänomenologisches Modell des dynamischen 

Verkehrsflusses in Schnellstraßennetzen, Diss., Uni Stuttgart, 1994 .

out inq k(i, t)v(i 1, t) q k(i 1, t)v(i, t)   

Δx
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Conservation law (cont‘d)

A continuum approximation allows the Taylor expansion

outq q(i i 1, t) k(x, t)

v(x,t) x v (x,t)x

2 3( x) ( x)
v (x,t) v (x,t) ...xx xxx

2 6

   

  
 
  

   
 

inq q(i 1 i, t)

k(x,t) x k (x,t)x

2 3 v(x, t)( x) ( x)
k (x,t) k (x,t) ...xx xxx

2 6

   

  
 
  

   
 

dN(i,t)
k (i, t) x q qt out indt

    

x
k (kv k v) ( kv k v)

2

2( x)
(kv k v) ...

t x x xx xx xxx xxx6


     


  

Inserted into

gives the conservation law
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Vopt (k) is the equilibrium speed-density relation from the fund-

amental diagram. (1) and (2) is a modification (i.e. infinitesimal 

relaxation time) of the macro-scopic traffic flow model firstly 

introduced by Bando et al.*).

 optv=V k (2)

For the speed variation we assume, that the density k

follows instantaneously an optimum velocity function:

This can be transformed into a new conservation law

 
2

t x x x xx xx x x

x ( x)
k q 0, q kv kv k v (kv k v k v ) ...(1)

2 6

 
        

*)Bando, M., et al.: Phys. Rev. E Vol.5, pp. 1035(1995)
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Selecting an operating point in very dense traffic

mk

Vopt(k) ≈

0

m

opt m opt m m

0 c
(a 1)

k

V (k ) V (k )(k k )


 

 

k

v

vf

0

Vopt(k)

 m 0k (1 k) c v
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Decomposition for 

very dense traffic

gives
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t x x xx xx xx xxx xxx xxx
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c 2 6
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Inserting the second relation

and sorting the terms yields to

2

x xx xxx

2
2

t x xxxxxx

0

x ( x)
v v v ...

2 6

1 1 ( x)
v (v ) vv ... 0

a 1 c 3

  
   

 

 
     

  

Proper scaling                                  (´suppressed)                               

separates the equation of motion in terms of O(λ) and O(λ2). 
t tv v 

    

(a 1)k v 0   
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Synchronized traffic description

O(λ) contains only linear terms and no temporal changes

The constant solution ṽ(0) is “synchronized traffic”: in very dense

traffic creeping shows undulations only on a coarse scale, and the

behavior in adjacent lanes shows no big differences (traffic in ad-

jacent lanes seems to be synchronized*)).

*)Palmer, J., et al. Quality of Congested Traffic Int’l J. Adv. Systems 4 pp.168-182 (2011)

2
(0) (0) (0) (0)

x xx xxx syn

x ( x)
v v v ... 0 v const. v

2 6
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Korteweg-de Vries equation for speed drop propagation

(wide moving jam)

In O(λ2) the time derivative and the nonlinear terms prevail

ṽ(1) follows a nonlinear equation for the spatio-temporal speed

variations of the Korteweg-de Vries type: in very dense traffic

other traffic patterns than the synchronized traffic can occur

under certain parameter configurations. 

2
(1) (1) 2 (1) (1) (1) solution of non

t x xxx linerar equation

0

1 ( x)
v ((v ) ) v v ... 0 v

c 3
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example *)

of a back-

wards 

running

jam, stable 

over more 

than 20 km

* )  R.-P. Schäfer et al., "A study about probe vehicle data to verify the three-phase

traffic theory". Traffic Engineering and Control, Vol 52, No 5, Pages 225-231, 2011 

Wide moving jam
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Distance time dia-

grams from traffic 

patterns in very 

dense traffic show-

ing stable backwards 

running shockwaves 

remaining stable over 

long distances *)
(red=low speed, yellow=high speed)

*)Palmer, J., Rehborn, H., Congested Traffic 

Patterns, ITS World Congress, 

Stockholm,2009



Using a mean field approximation for the 

third order derivative term as indicated

with the mean value       as profile average

determined by a self consistency condition

later on 141

2 2 2
(1) (1) (1) (1) (1) (1)

xxx xxx xxx

( x) ( x) ( x)
v v v v v v

3 3 3

  
  

(1)v

(1) (1)1
v dx v (x, t)

2






 



and a change in the variables (´´suppressed) 

gives for the temporal and spatial behavior of

the (normalized) speed u

(nonlinear wave equation also called 

Korteweg-de Vries equation)

142

(1) (1)0

(1)

c x 1
t v t x u v

3 x x v
    

 

t x xxxu 6u u u 0  
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This is exactly the Korteweg-de Vries equation, descri-

bing waves with long wavelengths running stable like a 

Tsunami*).

The Korteweg-de Vries equation as a  nonlinear equa-

tion for the spatio-temporal speed variations describes

the impressive wide moving jams in very dense traffic, 

i.e. the backward running shockwaves, which are so 

stable, that even traffic from interchanges do not destroy 

their structure (compare distance-time diagrams shown

above).

*) Remoissenet, M., Waves Called Solitons, Springer publ.,1999

Amazon_tidal_bore.avi


The solution can be found either by the Cole-Hopf

transformation*)

which converts the Korteweg-de Vries equation into

a homogeneous quadratic differential equation

or by a direct ansatz, which is shown in the following

section and leads to the solution

*) Whitham, G.B., Linear and Nonlinear Waves, Wiley, 1974 144

zzu 2(ln F) 

 2 0

N
u(x, t)

cosh (x x ) t
 

  



Soliton solution of the general Korteweg-de Vries equation

The general Korteweg-de Vries equation reads

Introducing the collective coordinate

z=κ(x-x0)+ωt     or   ∂t=ω∂z ∂x=κ∂z

gives

The boundary condition u=0 for x→±∞

leads to 2 2

zzu u u 0
2
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u uu u 0 resp. u u u C
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The ansatz fulfills the Korteweg- de Vries equation for

As simple case the following parameter set is chosen

With this the self consistency condition

is for κ=Λ/2 automatically fulfilled. 

As final result, if we restrict to second order and take ṽsyn as the

asymptotic speed, we get for the speed profile in very dense traffic

which describes a temporal and spatial variation, with a low speed

at the very tails and a stable backward running breakdown.

2 2
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6
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6 1 N 2 4
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The ansatz

gives

and leads to

As simple case the following parameter set is

chosen 
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This  result fits excellently with the empirically

observed data from vehicle probes or inductive

loops in very dense traffic situations.

These data of the spatio-temporal patterns

allow the determination of the parameters like

backwards speed and breakdown amplitude

and make the perturbation approach very

reasonable.
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Traffic patterns from free flow to very dense*)

*) Kerner, B., et al. Methods for tracing and forecasting congested

traffic patterns,Traffic Engineering &Control 42, pp282-287, 2001



The multi-soliton solution of the original Korteweg-de

Vries equation

can be obtained under proper initial conditions and under

the boundary conditions u=0 for x→±∞ as shown in the

above inverse scattering theory section, or when we set

with the collective coordinates zi=κi(x-xi
0)+ωit =κi(x-xi

0)+κi
3 t

as the only independent variables.

t x xxxu 6uu u 0  
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Multi-soliton solutions as explanation for distance

time pattern with several wide moving jams
R.-P. Schäfer et al., "A study about probe vehicle data to verify the three-

phase traffic theory". 

Traffic Engineering and Control, Vol 52, No 5, Pages 225-231, 2011 
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Distance-time patterns 

from probe vehicle data

autobahn A5 North 

May 12, 2010

time of the day
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time pattern with several wide moving jams
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Distance-time patterns 

from inductive loops

autobahn A5 North 

May 12, 2010
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