

INSTITUT FÜR PHYSIK

Vehicular Motion on a Hilly Road

(2)

Abstract

We consider the motion of a point-like car on a one-dimensional undulating road under the influence of gravitation and friction. Based on a Newtonian description we investigate the equations of motion of a particle to discuss the speed and position of a car of mass m on a undulating path f(x).

Special Situations

FIGURE 1: In the figure above the vehicular particle follows the path shown as full red line.

Equations of Motion

The motion of a particle of mass m along a one dimensional path of elevation y = f(x) taking both gravitational and frictional forces into account is given by

We present a solution of eq. (5) in two special cases: motion on an arc of a loop road and on a street with a double well.

The motion of a mass on an arc $y = f(x) = -\sqrt{R^2 - x^2}$ with radius R is described by equations

$$m \dot{v}_{x} = -mg \frac{\sqrt{R^{2} - x^{2}}}{R^{2}} x - m \frac{x}{R^{2} - x^{2}} v_{x}^{2} - mg \gamma \frac{\sqrt{R^{2} - x^{2}}}{R} v_{x} , \qquad (6)$$

$$\dot{x} = v_{x} , \qquad (7)$$

which in polar coordinates $x = R \sin \varphi$ reads

$$\ddot{\varphi} = -\frac{g}{R}\sin\varphi - g\gamma\,\cos\varphi\,\dot{\varphi}\,. \tag{8}$$

In fact, this is the equation of mathematical pendelum with a new interesting friction term. The solution is illustrated in Fig. 3.

FIGURE 3: Trajectories in the phase space of velocity and coordinate as solutions of (6,7) with parameters

$$\begin{split} m \, \dot{v}_T \, &= \, F_T + \gamma \, F_N \, v_T \, , \\ \dot{q}_T \, &= \, v_T \, , \end{split}$$

where q_T, q_N are the tangential and normal coordinates to the path defined by f(x), v_T and $\dot{v}_T = dv_T/dt$ are the velocity and acceleration in the direction of motion. The gravitational force F = -mg is split into a part that acts in the direction of motion $F_T = F \sin \alpha =$ $-mg\sin\alpha$ and a part that is normal to the path $F_N = F\cos\alpha = -mg\cos\alpha$. The cartesian coordinates x, y and the angle α are defined in the figure above. The coefficient of friction is given as parameter $\gamma \geq 0$.

In cartesian coordinates the equations of motion (1,2) are

$$m \dot{v}_x = -mg \frac{f'(x)}{1 + f'^2(x)} - m \frac{f'(x)f''(x)}{1 + f'^2(x)} v_x^2 - mg\gamma \frac{1}{\sqrt{1 + f'^2(x)}} v_x , \qquad (3)$$

$$\dot{x} = v_x , \qquad (4)$$

where the first derivative of f is f'(x) = df(x)/dx and f''(x) is the second derivative and $f'^2(x)$ is the square of f'(x). The first and second derivatives with respect to time are denoted by $\dot{x} = dx/dt$ and $\ddot{x} = d^2x/dt^2$.

The equations (3,4) can be written together as

$$m\ddot{x} = -mg\frac{f'(x)}{1+f'^2(x)} - m\frac{f'(x)f''(x)}{1+f'^2(x)}\dot{x}^2 - mg\gamma\frac{1}{\sqrt{1+f'^2(x)}}\dot{x} .$$
 (5)

A comparison with the results, reported by S. Geisendorf – see Fig. 2, shows the agreement of only the first terms on the right hand side (although the *y*-axis is directed down).

> Annäherung an die wirkenden Kräfte

R = 1 m, g = 9.81 m/s², m = 1 kg for $\gamma = 0$ s/m (thick line) and $\gamma = 0.1$ s/m (dashed line). The initial condition x(0) = 0.5 m, $v_x(0) = 0$ m/s is marked by a cross.

As another examle, we consider the motion on a double-well surface

$$f(x) = \frac{a_2}{2}x^2 + \frac{a_3}{3}x^3 + \frac{a_4}{4}x^4 , \qquad (9)$$

see Fig. 4, with minima x_{min} located at $-(\sqrt{21}-1)/2 \approx -1.79$ und $+(\sqrt{21}+1)/2 \approx 2.79$.

FIGURE 4: The surface (9) with parameters $a_2 = -5 \text{ m}^{-1}$, $a_3 = -1 \text{ m}^{-2}$ and $a_4 = 1 \text{ m}^{-3}$. Various initial coordinates are marked by different symbols (cross, plus, asterisk).

The solutions in the phase space of velocity and coordinate is shown in Fig. 5.

Prof. Dr. Sylvie Geisendorf, ESCP Europe Berlin

FIGURE 2: From the talk given by Professor Sylvie Geisendorf during the meeting *Physik trifft Volkswirschaftslehre* at the University of Oldenburg, 21.03.2014.

FIGURE 5: Trajectories in the phase space of velocity and coordinate as solutions of (1,2) with parameters $g = 9.81 \text{ m/s}^2$, m = 1 kg and $\gamma = 0 \text{ s/m}$ for $v_x(0) = 0 \text{ m/s}$ and different initial coordinates x(0), shown as in Fig. 4. The dashed line shows the trajectory for v_T at x(0) = 4 m, other lines – trajectories for v_x at x(0) = 4 m (thick line), x(0) = 3.5 m (right thin line) und x(0) = -2.5 m (left thin line).

Reinhard Mahnke^a, Jevgenijs Kaupužs^b, Hans Weber^c

^a Institute of Physics, Rostock University, Albert-Einstein-Str. 23, D-18051 Rostock, Germany ^b Institute of Mathematical Sciences, University of Liepaja, LV-3401 Liepaja, Latvia ^C Department of Physics, Luleå University of Technology, SE-97187 Luleå, Sweden