

Overview of topics

Objective: You know how to approach the task of writing a scientific text

IsB

Introduction

Challenges

- Conventions for scientific writing
- \rightarrow Different from other texts
- \rightarrow Usually not explicitly taught

Guidance to help you preparing your first theses, scientific publications or reports

General advice: read scientific texts!

Introduction

General thoughts

- > Set a high quality standard for your document
- Identify yourself with your work

Sell your idea!

- > Writing is an iterative process
 - Revision of content
 - Gradual improvement

Submit when you are satisfied!

Preparation

Target group

- Every scientific text targets a specific group of readers with specific knowledge in the respective area
- Identification of the target group is the first important task

Preparation

General Requirements

- ➤ Familiarize yourself with the conventions
 - > Theses: university requirements
 - > Publications: publisher requirements
 - Report: institution guidelines / client expectations
- Establish the central idea of your document
 - > What is your message?
 - How do you want to guide the reader through your text?

IsB

Preparation

General Requirements

Restrictions

- > Working with third parties?
- Are there any relevant IP rights or NDAs?
- > Would they prevent you from publishing your work?

Preparation

The bigger picture

> Make sure you understand the context of your work

Structure

Default structuring

- > Abstract
- > Introduction
- ➢ State-of-the-Art
- ➤ Main part
- Conclusions
- > Perspective
- > (Acknowledgement)
- ➢ References
- > (Appendices)

Take the reader by the hand!

Structure

Default structuring

- > Abstract
- Introduction
- ➢ State-of-the-Art
- ➢ Main part
- Conclusions
- Perspectives
- > (Acknowledgement)
- ➢ References
- > (Appendices)

Who does what?

How many pages per section?

Structure

Abstract

Most important part of your work after the title → decides whether a reader continues or not!

Short summary of Background Objectives Methodology Results Conclusion

2-5 sentences each

figures, equations, formulae "in this thesis/paper/work..."

➤ Stands for itself

 \rightarrow must be understandable without further information

IISB

- Use important key words
 - \rightarrow search engines are scanning through abstracts

No!

Structure

Introduction

- Introduce the topic and derive the motivation for working on the selected topic
 - \rightarrow point out the problem from current state and why it should be treated

ISB

- \rightarrow attract interest by highlighting the importance

State-of-the-Art

- Describe the status of research and development that is relevant for your area of research
 - \rightarrow Show that your contribution adds important knowledge

Structure

Main part

Important part where you describe your work, results and findings

Structure

Main part

- Maximum section depth not more than three!

 → Level of detail should comparable at same depth!
- ➢ Main findings should be highlighted → use lists, tables and graphs!
 - 1. Experimental Analysis
 1.1 Setup
 1.1.1 Instrumentation
 <u>1.1.1.1 Strain Gauges</u>
 2. Test Matrix
 ...

Structure

Conclusions

- Summarize the main findings of your research work No summary of your work and methodology, but of findings, with interpretation
- Pay attention to this part and reformulate if necessary It is the third part a reader looks at (after title and abstract) before deciding to read the text or not

Structure

Perspectives

➤ Highlight the need for further research that you have identified during your work → clear statement of the limitations of your work!

Acknowledgement

Express your gratitude towards people or institutions who significantly contributed to your work (and are no co-authors)

ISB

 \rightarrow obligations and specific formulations for funded research!

Structure

References

- All the literature you have used and are citing in your text needs to be listed in a specific chapter
- Use one of the official scientific citation formats See "style" section

Appendices

Additional information that is not strictly required to understand the text Mathematical derivations Technical specifications Additional data tables and diagrams

Style

General recommendations

Don't!	Do!	
 past tense / diary style aggressive marketing first person pronouns long sentences double negations repetitions 	 > present tense > factual tone > third person pronouns > short sentences > positive expressions 	
passive or active voice	e? \rightarrow deliberate use!	

IsB

Style

Avoid imprecise expressions

Style

Title

- ➤ Keep it as short as possible and as long as necessary
- Focus on content and main idea
- Use moderate wording, no marketing
- No abbreviations

The title of your text decides whether someone reads it or not!

Style

Headlines

- Use suggestive headlines to ease cross-reading
- Keep headlines short
- No abbreviations or product names

Footnotes

- \succ In engineering sciences, the use of footnotes is not common
- Further explanations are usually given inside the text in brackets

Acronyms and abbreviations

- Need for explanation depends on target group
- > At first use in the text, provide explanation

Style

Numbers and units

- ➢ When to use digits?
 → From 13 onwards
- > When to write out numbers?

 \rightarrow In the range from 1 to 12 except when used in context with greater numbers and when used at the beginning of a sentence

What to do with high numbers?
 Better use ,, " instead of ,,," or ,.." as a separator to avoid misinterpretation

10,000,000 10.000.000 10 000 000

ISB

seven 7 out of 49

Style

Numbers and units

> When to use units?

Always use SI-units with a space when it concerns physical values

100N 100 N

➤ How many digits?

It depends on the accuracy of your calculations/measurements

Especially when using empirical or low fidelity methods, numbers should be rounded

1856.2568439 N 1900 N

IISB

Style

Citation

> When is it necessary?

Plagiarism is a crime!

When you are documenting the state-of-the-art When you are directly using text, figures or content from other authors

IISB

> What can be cited?

Primary sources of information Publicly accessible sources of information

Style

Citation

> Which citation formats can be used?

a) IEEE Style

Text:

"Blendermann conducted wind tunnel tests to establish a database of wind coefficients for different ship types [1]."

Reference section: [1] Blendermann, W., Wind loading of shipscollected data from wind tunnel tests in uniform flow, Report 574, TU Hamburg, 1996

Style

Citation

> Which citation formats can be used?

b) APA Style

Text:

"Blendermann (1996) conducted wind tunnel tests to establish a database of wind coefficients for different ship types."

IsB

Reference section: Blendermann, W., (1996), Wind loading of shipscollected data from wind tunnel tests in uniform flow, Report 574, TU Hamburg, 1996

Layout

Text format

Focus

readability and accessibility

IsB

Layout

Text format

Headlines Should they look like this?

1. Headlines 💙

No, they should they look like this!

Focus readability and accessibility

Important information can be highlighted like this!

avoid excessive use of italics!

Elements

Lists

Lists can be used to structure connected information and can be

I.SB

- part of a sentence like this,
- or they can contain complete sentences or single
- words
- or even sublists.

Make sure to use consistent list formats!

Elements

Tables

Hint no.	What to consider
1	All rows and columns must be labled
2	Font size should not be much smaller than text size
3	Do not use screen shots of tables
4	Use lines with uniform spacing to separate rows and columns
5	Tables should have a meaningful caption
6	Tables must be referred to and contents discussed in the text
7	In case of very broad tables, consider using landscape format

Elements

Figures

General

- > Types: Diagram, flow chart, picture
- Figures increase information density and enable a faster comprehension of information

 Chose a suitable information density

- > You need to carefully think what you want to convey by a specific figure
- Every figure must have a caption and should be numbered
- > Every figure must be referred to in the text and explained!
- Check readability
 - Font size
 - ➢ contrast
 - Background color

Elements

Figures

Diagrams

Example: relation between two parameters

Elements

Figures

pictures

Example: photograph

IsB

Elements

Equations

> Which equations are relevant to support the comprehensibility of your text?

(1)

- Set the equations inside the text program → no screenshots, font size!
- > Number all equations
- Explain all symbols
- Consider the knowledge of the reader!
 derive equation if necessary

$$Fn = \frac{v}{\sqrt{g \cdot l}}$$

Elements

Listing

- > Algorithms/code snippets embedded into text follows the listing format:
 - Listing have captions and numbers
 - Lines are numbered
- > When explaining code/algorithms in text, refer listing number and the line numbers
- > Every listing must be explained and referred in text. If not, put them into appendix
- Check readability

```
import numpy as np
def add(a: float b: float):
return a+b
def multiply(a: float b: float)
return a*b
```


Elements

Additional elements

- Internal references
 sections, chapters, equations, tables, figures etc.
- Table of contents
 required for longer structured texts
- List of symbols / nomenclature
 required if many equations are included
- List of abbreviations
 - \rightarrow required if many abbreviations are used

IISB

Final Check

Content check

- > Did I elaborate sufficiently on the main findings?
- ➢ Is my structure clear and logical?
- > Are all necessary information included?
- ➢ Is the text readable without gaps and thematic jumps?
- > Are the repetitions in the text?
- > Did I include the sections Introduction, Summary, Conclusions and Perspectives?

Final Check

Style check

- Did I check spelling and grammar?
- Did I follow the style guidelines for scientific writing?
- ➢ Is the style consistent over all sections?
- > Did I explain all abbreviations at the first appearance in the text?
- Are all equations correct and numbered?
- Did I use captions for all figures and tables?
- > Are all references included and correctly cited?
- > Are all internal references correct?
- Are table of content, nomenclature and list of abbreviations complete?

Final Check

Format check

- Does my layout consistently follow the guidelines?
- > Are all equations and labels readable, especially the indices?
- > Are all graphical visualizations well readable (e.g. different lines in diagrams)?

- Are all tables well readable?
- Does my text generally look good (e.g. no large blank spaces)?
- ➢ How does my document look like after conversion to PDF format?

Scientific Writing

Guide for the preparation of scientific texts

Contact Prof Florian Sprenger florian.sprenger@uni-rostock.de

